Bindu D Paul

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3287348/bindu-d-paul-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

51	3,852	31	59
papers	citations	h-index	g-index
59	4,768 ext. citations	10.6	6.09
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
51	Biliverdin reductase bridges focal adhesion kinase to Src to modulate synaptic signaling <i>Science Signaling</i> , 2022 , 15, eabh3066	8.8	1
50	Cysteine metabolism and hydrogen sulfide signaling in Huntington & disease <i>Free Radical Biology and Medicine</i> , 2022 ,	7.8	2
49	Quantitative measurement of reactive oxygen species in mouse brain slices. <i>STAR Protocols</i> , 2021 , 2, 100332	1.4	O
48	Signaling by cGAS-STING in Neurodegeneration, Neuroinflammation, and Aging. <i>Trends in Neurosciences</i> , 2021 , 44, 83-96	13.3	21
47	Effects of hydrogen sulfide on mitochondrial function and cellular bioenergetics. <i>Redox Biology</i> , 2021 , 38, 101772	11.3	45
46	Hydrogen sulfide is neuroprotective in Alzheimer disease by sulfhydrating GSK3 and inhibiting Tau hyperphosphorylation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	34
45	Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	33
44	Loss of biliverdin reductase-a (BVR-A) impairs beneficial effects of CNS insulin on brain energy metabolism favoring the development of Alzheimer's disease (AD) neuropathology. <i>Alzheimer's and Dementia</i> , 2020 , 16, e039511	1.2	
43	Inositol polyphosphate multi-kinase is a novel regulator of reverse-transsulfuration pathway. <i>FASEB Journal</i> , 2020 , 34, 1-1	0.9	
42	BVR-A Deficiency Leads to Autophagy Impairment through the Dysregulation of AMPK/mTOR Axis in the Brain-Implications for Neurodegeneration. <i>Antioxidants</i> , 2020 , 9,	7.1	11
41	The glutathione cycle shapes synaptic glutamate activity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 2701-2706	11.5	57
40	Impaired Redox Signaling in Huntington ₩ Disease: Therapeutic Implications. Frontiers in Molecular Neuroscience, 2019, 12, 68	6.1	27
39	Histone H2AX promotes neuronal health by controlling mitochondrial homeostasis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 7471-7476	11.5	17
38	Regulators of the transsulfuration pathway. British Journal of Pharmacology, 2019, 176, 583-593	8.6	83
37	Bilirubin Links Heme Metabolism to Neuroprotection by Scavenging Superoxide. <i>Cell Chemical Biology</i> , 2019 , 26, 1450-1460.e7	8.2	38
36	Selective Persulfide Detection Reveals Evolutionarily Conserved Antiaging Effects of S-Sulfhydration. <i>Cell Metabolism</i> , 2019 , 30, 1152-1170.e13	24.6	122
35	Therapeutic Applications of Cysteamine and Cystamine in Neurodegenerative and Neuropsychiatric Diseases. <i>Frontiers in Neurology</i> , 2019 , 10, 1315	4.1	20

34	Redox Mechanisms in Neurodegeneration: From Disease Outcomes to Therapeutic Opportunities. <i>Antioxidants and Redox Signaling</i> , 2019 , 30, 1450-1499	8.4	50
33	Cysteine Metabolism in Neuronal Redox Homeostasis. <i>Trends in Pharmacological Sciences</i> , 2018 , 39, 513	-53.4	111
32	Histone H2AX deficiency causes neurobehavioral deficits and impaired redox homeostasis. <i>Nature Communications</i> , 2018 , 9, 1526	17.4	21
31	Golgi stress response reprograms cysteine metabolism to confer cytoprotection in Huntington disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 780-	- 18 5	46
30	Gasotransmitter hydrogen sulfide signaling in neuronal health and disease. <i>Biochemical Pharmacology</i> , 2018 , 149, 101-109	6	114
29	Allele-specific regulation of mutant Huntingtin by Wig1, a downstream target of p53. <i>Human Molecular Genetics</i> , 2016 , 25, 2514-2524	5.6	3
28	Transcriptional control of amino acid homeostasis is disrupted in Huntington & disease. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 8843-8	11.5	43
27	Huntington disease: Neural dysfunction linked to inositol polyphosphate multikinase. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 9751-6	11.5	23
26	H2S: A Novel Gasotransmitter that Signals by Sulfhydration. <i>Trends in Biochemical Sciences</i> , 2015 , 40, 687-700	10.3	197
25	Modes of physiologic H2S signaling in the brain and peripheral tissues. <i>Antioxidants and Redox Signaling</i> , 2015 , 22, 411-23	8.4	46
24	Protein sulfhydration. <i>Methods in Enzymology</i> , 2015 , 555, 79-90	1.7	39
23	Serine racemase regulated by binding to stargazin and PSD-95: potential N-methyl-D-aspartate-Emmino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (NMDA-AMPA) glutamate neurotransmission cross-talk. <i>Journal of Biological Chemistry</i> , 2014 , 289, 29631-41	5.4	27
22	Cystathionine ∃yase deficiency mediates neurodegeneration in Huntington v disease. <i>Nature</i> , 2014 , 509, 96-100	50.4	249
21	Neurodegeneration in Huntington disease involves loss of cystathionine ∃yase. <i>Cell Cycle</i> , 2014 , 13, 2491-3	4.7	28
20	Golgi protein ACBD3 mediates neurotoxicity associated with Huntington & disease. <i>Cell Reports</i> , 2013 , 4, 890-7	10.6	43
19	Sulfhydration mediates neuroprotective actions of parkin. <i>Nature Communications</i> , 2013 , 4, 1626	17.4	201
18	Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 16181-6	11.5	27
17	Dexras1 mediates glucocorticoid-associated adipogenesis and diet-induced obesity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 20575-80	11.5	31

16	Inositol polyphosphate multikinase is a coactivator of p53-mediated transcription and cell death. <i>Science Signaling</i> , 2013 , 6, ra22	8.8	35
15	The conversion of H2S to sulfane sulfur: authors\response. <i>Nature Reviews Molecular Cell Biology</i> , 2012 , 13, 803-803	48.7	7
14	Hydrogen sulfide-linked sulfhydration of NF- B mediates its antiapoptotic actions. <i>Molecular Cell</i> , 2012 , 45, 13-24	17.6	490
13	HB signalling through protein sulfhydration and beyond. <i>Nature Reviews Molecular Cell Biology</i> , 2012 , 13, 499-507	48.7	580
12	Novel functions of protein arginine methyltransferase 1 in thyroid hormone receptor-mediated transcription and in the regulation of metamorphic rate in Xenopus laevis. <i>Molecular and Cellular Biology</i> , 2009 , 29, 745-57	4.8	46
11	Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 5171-6	11.5	320
10	A role of unliganded thyroid hormone receptor in postembryonic development in Xenopus laevis. <i>Mechanisms of Development</i> , 2007 , 124, 476-88	1.7	55
9	SRC-p300 coactivator complex is required for thyroid hormone-induced amphibian metamorphosis. Journal of Biological Chemistry, 2007 , 282, 7472-81	5.4	49
8	Contrasting effects of two alternative splicing forms of coactivator-associated arginine methyltransferase 1 on thyroid hormone receptor-mediated transcription in Xenopus laevis. <i>Molecular Endocrinology</i> , 2007 , 21, 1082-94		28
7	Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. <i>General and Comparative Endocrinology</i> , 2006 , 145, 1-19	3	171
6	Gene-specific changes in promoter occupancy by thyroid hormone receptor during frog metamorphosis. Implications for developmental gene regulation. <i>Journal of Biological Chemistry</i> , 2005 , 280, 41222-8	5.4	44
5	Tissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development. <i>Journal of Biological Chemistry</i> , 2005 , 280, 27165-72	5.4	53
4	Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis. <i>Molecular and Cellular Biology</i> , 2004 , 24, 9026-37	4.8	116
3	Distinct expression profiles of transcriptional coactivators for thyroid hormone receptors during Xenopus laevis metamorphosis. <i>Cell Research</i> , 2003 , 13, 459-64	24.7	32
2	An artificial regulatory circuit for stable expression of DNA-binding proteins in a T7 expression system. <i>Gene</i> , 1997 , 190, 11-5	3.8	3
1	The glutathione cycle shapes synaptic glutamate activity		1