
Giulio Alessandri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3286974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD146+ Pericytes Subset Isolated from Human Micro-Fragmented Fat Tissue Display a Strong Interaction with Endothelial Cells: A Potential Cell Target for Therapeutic Angiogenesis. International Journal of Molecular Sciences, 2022, 23, 5806.	1.8	7
2	p5 Peptide-Loaded Human Adipose-Derived Mesenchymal Stem Cells Promote Neurological Recovery After Focal Cerebral Ischemia in a Rat Model. Translational Stroke Research, 2021, 12, 125-135.	2.3	15
3	Paclitaxel Priming of TRAIL Expressing Mesenchymal Stromal Cells (MSCs- TRAIL) Increases Antitumor Efficacy of Their Secretome. Current Cancer Drug Targets, 2021, 21, 213-222.	0.8	9
4	Inhibition of Human Malignant Pleural Mesothelioma Growth by Mesenchymal Stromal Cells. Cells, 2021, 10, 1427.	1.8	9
5	Single-Shot Local Injection of Microfragmented Fat Tissue Loaded with Paclitaxel Induces Potent Growth Inhibition of Hepatocellular Carcinoma in Nude Mice. Cancers, 2021, 13, 5505.	1.7	4
6	In Vitro Activity of Monofunctional Pt-II Complex Based on 8-Aminoquinoline against Human Glioblastoma. Pharmaceutics, 2021, 13, 2101.	2.0	5
7	Automated Large-Scale Production of Paclitaxel Loaded Mesenchymal Stromal Cells for Cell Therapy Applications. Pharmaceutics, 2020, 12, 411.	2.0	20
8	Case Report: Microfragmented Adipose Tissue Drug Delivery in Canine Mesothelioma: A Case Report on Safety, Feasibility, and Clinical Findings. Frontiers in Veterinary Science, 2020, 7, 585427.	0.9	4
9	Paclitaxel-Loaded Silk Fibroin Nanoparticles: Method Validation by UHPLC-MS/MS to Assess an Exogenous Approach to Load Cytotoxic Drugs. Pharmaceutics, 2019, 11, 285.	2.0	15
10	Human Olfactory Bulb Neural Stem Cells (Hu-OBNSCs) Can Be Loaded with Paclitaxel and Used to Inhibit Glioblastoma Cell Growth. Pharmaceutics, 2019, 11, 45.	2.0	9
11	Long-Lasting Anti-Inflammatory Activity of Human Microfragmented Adipose Tissue. Stem Cells International, 2019, 2019, 1-13.	1.2	42
12	Microfragmented human fat tissue is a natural scaffold for drug delivery: Potential application in cancer chemotherapy. Journal of Controlled Release, 2019, 302, 2-18.	4.8	26
13	In Vitro Anticancer Activity of Extracellular Vesicles (EVs) Secreted by Gingival Mesenchymal Stromal Cells Primed with Paclitaxel. Pharmaceutics, 2019, 11, 61.	2.0	44
14	Uptake-release by MSCs of a cationic platinum(II) complex active in vitro on human malignant cancer cell lines. Biomedicine and Pharmacotherapy, 2018, 108, 111-118.	2.5	18
15	A Nonenzymatic and Automated Closed-Cycle Process for the Isolation of Mesenchymal Stromal Cells in Drug Delivery Applications. Stem Cells International, 2018, 2018, 1-10.	1.2	12
16	Intra-Articular Administration of Autologous Micro-Fragmented Adipose Tissue in Dogs with Spontaneous Osteoarthritis: Safety, Feasibility, and Clinical Outcomes. Stem Cells Translational Medicine, 2018, 7, 819-828.	1.6	32
17	Paclitaxelâ€releasing mesenchymal stromal cells inhibit the growth of multiple myeloma cells in a dynamic 3D culture system. Hematological Oncology, 2017, 35, 693-702.	0.8	39
18	Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells. Biomedicine and Pharmacotherapy, 2017, 87, 755-758.	2.5	36

#	Article	IF	CITATIONS
19	Fibronectin-adherent peripheral blood derived mononuclear cells as Paclitaxel carriers for glioblastoma treatment: An in vitro study. Cytotherapy, 2017, 19, 721-734.	0.3	9
20	Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts. Stem Cell Research and Therapy, 2017, 8, 53.	2.4	57
21	Drug Loaded Gingival Mesenchymal Stromal Cells (GinPa-MSCs) Inhibit In Vitro Proliferation of Oral Squamous Cell Carcinoma. Scientific Reports, 2017, 7, 9376.	1.6	60
22	Establishment, characterization and long-term culture of human endocrine pancreas-derived microvascular endothelial cells. Cytotherapy, 2017, 19, 141-152.	0.3	6
23	Fluorescent Immortalized Human Adipose Derived Stromal Cells (hASCs-TS/GFP+) for Studying Cell Drug Delivery Mediated by Microvesicles. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 1578-1585.	0.9	23
24	Cell-mediated drug delivery by gingival interdental papilla mesenchymal stromal cells (GinPa-MSCs) loaded with paclitaxel. Expert Opinion on Drug Delivery, 2016, 13, 789-798.	2.4	39
25	Isolation, Expansion, and Immortalization of Human Adipose-Derived Mesenchymal Stromal Cells from Biopsies and Liposuction Specimens. Methods in Molecular Biology, 2016, 1416, 259-274.	0.4	10
26	Angiogenic and anti-inflammatory properties of micro-fragmented fat tissue and its derived mesenchymal stromal cells. Vascular Cell, 2016, 8, 3.	0.2	66
27	Vasculogenic and Angiogenic Pathways in Moyamoya Disease. Current Medicinal Chemistry, 2016, 23, 315-345.	1.2	44
28	Osteogenic differentiation of adipose tissue-derived mesenchymal stem cells cultured on a scaffold made of silk fibroin and cord blood platelet gel. Blood Transfusion, 2016, 14, 206-11.	0.3	4
29	Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy: an in vitro study. Stem Cell Research and Therapy, 2015, 6, 155.	2.4	60
30	Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opinion on Biological Therapy, 2015, 15, 495-504.	1.4	140
31	Human CD14+ cells loaded with Paclitaxel inhibit in vitro cell proliferation of glioblastoma. Cytotherapy, 2015, 17, 310-319.	0.3	13
32	Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts. Stem Cell Research and Therapy, 2015, 6, 194.	2.4	56
33	Gemcitabine-releasing mesenchymal stromal cells inhibit inÂvitro proliferation of human pancreatic carcinoma cells. Cytotherapy, 2015, 17, 1687-1695.	0.3	43
34	Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model. Journal of Experimental and Clinical Cancer Research, 2015, 34, 82.	3.5	30
35	Ex Vivo Expanded Mesenchymal Stromal Cell Minimal Quality Requirements for Clinical Application. Stem Cells and Development, 2015, 24, 677-685.	1.1	79
36	Mesenchymal Stromal Cells Uptake and Release Paclitaxel without Reducing its Anticancer Activity. Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 400-405.	0.9	7

#	Article	IF	CITATIONS
37	Potential use of human adipose mesenchymal stromal cells for intervertebral disc regeneration: a preliminary study on biglycan-deficient murine model of chronic disc degeneration. Arthritis Research and Therapy, 2014, 16, 457.	1.6	48
38	Human mesenchymal stromal cells primed with paclitaxel, apart from displaying anti-tumor activity, maintain their immune regulatory functions in vitro. Cytotherapy, 2014, 16, 868-870.	0.3	5
39	Decellularized silk fibroin scaffold primed with adipose mesenchymal stromal cells improves wound healing in diabetic mice. Stem Cell Research and Therapy, 2014, 5, 7.	2.4	108
40	Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. Journal of Controlled Release, 2014, 192, 262-270.	4.8	697
41	Autocrine/paracrine sphingosineâ€1â€phosphate fuels proliferative and stemness qualities of glioblastoma stem cells. Glia, 2014, 62, 1968-1981.	2.5	42
42	Membrane vesicles mediate pro-angiogenic activity of equine adipose-derived mesenchymal stromal cells. Veterinary Journal, 2014, 202, 361-366.	0.6	42
43	Human mesenchymal stromal cells can uptake and release ciprofloxacin, acquiring in vitro anti-bacterial activity. Cytotherapy, 2014, 16, 181-190.	0.3	19
44	Immortalization of human adipose-derived stromal cells: production of cell lines with high growth rate, mesenchymal marker expression and capability to secrete high levels of angiogenic factors. Stem Cell Research and Therapy, 2014, 5, 63.	2.4	51
45	Human Adipose-Derived Mesenchymal Stem Cells as a New Model of Spinal and Bulbar Muscular Atrophy. PLoS ONE, 2014, 9, e112746.	1.1	15
46	Human and mouse brain-derived endothelial cells require high levels of growth factors medium for their isolation, in vitro maintenance and survival. Vascular Cell, 2013, 5, 10.	0.2	21
47	Isolation and expansion of human and mouse brain microvascular endothelial cells. Nature Protocols, 2013, 8, 1680-1693.	5.5	73
48	Mesenchymal stromal cells primed with <scp>P</scp> aclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemiaâ€bearing mice. British Journal of Haematology, 2013, 160, 766-778.	1.2	67
49	Targeting p35/Cdk5 Signalling via CIP-Peptide Promotes Angiogenesis in Hypoxia. PLoS ONE, 2013, 8, e75538.	1.1	17
50	Mesenchymal Stem/Stromal Cells: A New ''Cells as Drugs'' Paradigm. Efficacy and Critical Aspects in Cell Therapy. Current Pharmaceutical Design, 2013, 19, 2459-2473.	0.9	144
51	Human Skin-Derived Fibroblasts Acquire In Vitro Anti-Tumor Potential after Priming with Paclitaxel. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 523-530.	0.9	12
52	Human skin-derived fibroblasts acquire in vitro anti-tumor potential after priming with Paclitaxel. Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 523-30.	0.9	10
53	HIV-1 matrix protein p17 promotes angiogenesis via chemokine receptors CXCR1 and CXCR2. Proceedings of the United States of America, 2012, 109, 14580-14585.	3.3	92
54	Transforming growth factor-beta1 induces microvascular abnormalities through a down-modulation of neural cell adhesion molecule in human hepatocellular carcinoma. Laboratory Investigation, 2012, 92, 1297-1309.	1.7	22

#	Article	IF	CITATIONS
55	Three-Dimensional Self-Organizing Neural Architectures: A Neural Stem Cells Reservoir and a System for Neurodevelopmental Studies. Tissue Engineering - Part C: Methods, 2011, 17, 1109-1120.	1.1	2
56	Nanotechnology Advances in Brain Tumors: The State of the Art. Recent Patents on Anti-Cancer Drug Discovery, 2011, 6, 58-69.	0.8	30
57	Dermal fibroblasts display similar phenotypic and differentiation capacity to fat-derived mesenchymal stem cells, but differ in anti-inflammatory and angiogenic potential. Vascular Cell, 2011, 3, 5.	0.2	116
58	Diagnostic Implications of L1, p16, and Ki-67 Proteins and HPV DNA in Low-grade Cervical Intraepithelial Neoplasia. International Journal of Gynecological Pathology, 2011, 30, 597-604.	0.9	14
59	Mesenchymal Stromal Cells Primed with Paclitaxel Provide a New Approach for Cancer Therapy. PLoS ONE, 2011, 6, e28321.	1.1	146
60	Omentum-derived stromal cells improve myocardial regeneration in pig post-infarcted heart through a potent paracrine mechanism. Experimental Cell Research, 2010, 316, 1804-1815.	1.2	24
61	Human neural stem cells: a model system for the study of Lesch–Nyhan disease neurological aspects. Human Molecular Genetics, 2010, 19, 1939-1950.	1.4	28
62	U94 of human herpesvirus 6 inhibits in vitro angiogenesis and lymphangiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 20446-20451.	3.3	51
63	Human CD133 ⁺ Progenitor Cells Promote the Healing of Diabetic Ischemic Ulcers by Paracrine Stimulation of Angiogenesis and Activation of Wnt Signaling. Circulation Research, 2009, 104, 1095-1102.	2.0	234
64	Human fetal aorta-derived vascular progenitor cells: identification and potential application in ischemic diseases. Cytotechnology, 2008, 58, 43-47.	0.7	16
65	Inhibition of telomerase in the endothelial cells disrupts tumor angiogenesis in glioblastoma xenografts. International Journal of Cancer, 2008, 122, 1236-1242.	2.3	32
66	Human adult skeletal muscle stem cells differentiate into cardiomyocyte phenotype in vitro. Experimental Cell Research, 2008, 314, 366-376.	1.2	17
67	Transforming Growth Factor-β1 and CD105 Promote the Migration of Hepatocellular Carcinoma–Derived Endothelium. Cancer Research, 2008, 68, 8626-8634.	0.4	76
68	Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. European Journal of Cancer, 2007, 43, 935-946.	1.3	523
69	Human Fetal Aorta Contains Vascular Progenitor Cells Capable of Inducing Vasculogenesis, Angiogenesis, and Myogenesis in Vitro and in a Murine Model of Peripheral Ischemia. American Journal of Pathology, 2007, 170, 1879-1892.	1.9	93
70	Isolation and characterization of lymphatic microvascular endothelial cells from human tonsils. Journal of Cellular Physiology, 2006, 207, 107-113.	2.0	34
71	Glioblastoma-derived tumorospheres identify a population of tumor stem-like cells with angiogenic potential and enhanced multidrug resistance phenotype. Glia, 2006, 54, 850-860.	2.5	246
72	Genetically Engineered Stem Cell Therapy for Tissue Regeneration. Annals of the New York Academy of Sciences, 2004, 1015, 271-284.	1.8	55

#	Article	IF	CITATIONS
73	Isolation and culture of human muscle-derived stem cells able to differentiate into myogenic and neurogenic cell lineages. Lancet, The, 2004, 364, 1872-1883.	6.3	172
74	CCL16 activates an angiogenic program in vascular endothelial cells. Blood, 2004, 103, 40-49.	0.6	85
75	Human herpesvirus-6 modulates RANTES production in primary human endothelial cell cultures. Journal of Medical Virology, 2003, 70, 451-458.	2.5	57
76	CD8+CD28-T Lymphocytes from HIV-1-Infected Patients Secrete Factors That Induce Endothelial Cell Proliferation and Acquisition of Kaposi's Sarcoma Cell Features. Journal of Interferon and Cytokine Research, 2003, 23, 523-531.	0.5	9
77	Human neural stem cells express extra-neural markers. Brain Research, 2002, 925, 213-221.	1.1	31
78	HHV-6 infects human aortic and heart microvascular endothelial cells, increasing their ability to secrete proinflammatory chemokines. Journal of Medical Virology, 2002, 67, 528-533.	2.5	82
79	Inhibition of neuroblastoma-induced angiogenesis by fenretinide. International Journal of Cancer, 2001, 94, 314-321.	2.3	63
80	Human Vasculogenesis Ex Vivo: Embryonal Aorta as a Tool for Isolation of Endothelial Cell Progenitors. Laboratory Investigation, 2001, 81, 875-885.	1.7	85
81	CD11b Expression Identifies CD8+CD28+T Lymphocytes with Phenotype and Function of Both Naive/Memory and Effector Cells. Journal of Immunology, 2001, 166, 900-907.	0.4	42
82	Selective Activation of Cervical Microvascular Endothelial Cells by Human Papillomavirus 16-E7 Oncoprotein. Journal of the National Cancer Institute, 2001, 93, 1843-1851.	3.0	14
83	Expansion of Rare CD8+CD28â^'CD11bâ^' T Cells With Impaired Effector Functions in HIV-1–Infected Patients. Journal of Acquired Immune Deficiency Syndromes (1999), 2000, 24, 465-474.	0.9	11
84	Expansion of Rare CD8+CD28â^'CD11bâ^' T Cells With Impaired Effector Functions in HIV-1–Infected Patients. Journal of Acquired Immune Deficiency Syndromes (1999), 2000, 24, 465-474.	0.9	14
85	Phenotypic and functional characteristics of tumour-derived microvascular endothelial cells. Clinical and Experimental Metastasis, 1999, 17, 655-662.	1.7	35
86	Human neuroblastoma cells produce extracellular matrix-degrading enzymes, induce endothelial cell proliferation and are angiogenicin vivo. , 1998, 77, 449-454.		54
87	Angiogenic and Angiostatic Microenvironment in Tumors:Role of Gangliosides. Acta Oncológica, 1997, 36, 383-387.	0.8	38
88	Gangliosides, copper ions and angiogenic capacity of adult tissues. Cancer and Metastasis Reviews, 1990, 9, 239-251.	2.7	37
89	Substance P stimulates neovascularization in vivo and proliferation of cultured endothelial cells. Microvascular Research, 1990, 40, 264-278.	1.1	268
90	Angiogenesis factor(s) activity can be modulated by gangliosides. Pharmacological Research Communications, 1988, 20, 11-12.	0.2	1

#	Article	IF	CITATIONS
91	Characterization of tumor lines derived from spontaneous metastases of a transplanted murine sarcoma. European Journal of Cancer, 1981, 17, 71-76.	1.0	55
92	A murine ovarian tumor with unique metastasizing capacity. European Journal of Cancer, 1981, 17, 651-653.	1.0	19