
Thomas van Groen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3286934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RORÎ ³ t-Expressing Pathogenic CD4+ T Cells Cause Brain Inflammation during Chronic Colitis. Journal of Immunology, 2022, 208, 2054-2066.	0.4	11
2	Widespread Doublecortin Expression in the Cerebral Cortex of the Octodon degus. Frontiers in Neuroanatomy, 2021, 15, 656882.	0.9	3
3	Dysregulated clock gene expression and abnormal diurnal regulation of hippocampal inhibitory transmission and spatial memory in amyloid precursor protein transgenic mice. Neurobiology of Disease, 2021, 158, 105454.	2.1	15
4	The SINE Compound KPT-350 Blocks Dystrophic Pathologies in DMD Zebrafish and Mice. Molecular Therapy, 2020, 28, 189-201.	3.7	17
5	Reductive stress promotes protein aggregation and impairs neurogenesis. Redox Biology, 2020, 37, 101739.	3.9	21
6	Subchronic administration of auranofin reduced amyloid-β plaque pathology in a transgenic APPNL-G-F/NL-G-F mouse model. Brain Research, 2020, 1746, 147022.	1.1	2
7	Dominant-Negative Attenuation of cAMP-Selective Phosphodiesterase PDE4D Action Affects Learning and Behavior. International Journal of Molecular Sciences, 2020, 21, 5704.	1.8	6
8	Cyclic O3 exposure synergizes with aging leading to memory impairment in male APOE ε3, but not APOE ε4, targeted replacement mice. Neurobiology of Aging, 2019, 81, 9-21.	1.5	11
9	Inhibition of amyloid Aβ aggregation by high pressures or specific <scp>d</scp> -enantiomeric peptides. Chemical Communications, 2018, 54, 3294-3297.	2.2	13
10	Behavioral and SCN neurophysiological disruption in the Tg-SwDI mouse model of Alzheimer's disease. Neurobiology of Disease, 2018, 114, 194-200.	2.1	11
11	A Small Molecule Inhibitor of Plasminogen Activator Inhibitor-1 Reduces Brain Amyloid-β Load and Improves Memory in an Animal Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 64, 447-457.	1.2	29
12	Retinal changes in the Tg-SwDI mouse model of Alzheimer's disease. Neuroscience, 2017, 354, 43-53.	1.1	11
13	Vitamin A and retinoic acid combination attenuates neonatal hyperoxia-induced neurobehavioral impairment in adult mice. Neurobiology of Learning and Memory, 2017, 141, 209-216.	1.0	11
14	Optimization of <scp>d</scp> -Peptides for Al² Monomer Binding Specificity Enhances Their Potential to Eliminate Toxic Al² Oligomers. ACS Chemical Neuroscience, 2017, 8, 1889-1900.	1.7	20
15	The Aβ oligomer eliminating D-enantiomeric peptide RD2 improves cognition without changing plaque pathology. Scientific Reports, 2017, 7, 16275.	1.6	42
16	Treatment of traumatic brain injury with 17α-ethinylestradiol-3-sulfate in a rat model. Journal of Neurosurgery, 2017, 127, 23-31.	0.9	28
17	Altered phosphorylation, electrophysiology, and behavior on attenuation of PDE4B action in hippocampus. BMC Neuroscience, 2017, 18, 77.	0.8	25
18	Dietary composition affects the development of cognitive deficits in WT and Tg AD model mice. Experimental Gerontology, 2016, 86, 39-49.	1.2	18

#	Article	IF	CITATIONS
19	Increase of Positive Net Charge and Conformational Rigidity Enhances the Efficacy of <scp>d</scp> -Enantiomeric Peptides Designed to Eliminate Cytotoxic Al² Species. ACS Chemical Neuroscience, 2016, 7, 1088-1096.	1.7	24
20	Blood-brain barrier penetration of an AÎ ² -targeted, arginine-rich, d -enantiomeric peptide. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 2717-2724.	1.4	21
21	Observational research rigour alone does not justify causal inference. European Journal of Clinical Investigation, 2016, 46, 985-993.	1.7	30
22	Memory-enhancing and brain protein expression-stimulating effects of novel calcium antagonist in Alzheimer's disease transgenic female mice. Pharmacological Research, 2016, 113, 781-787.	3.1	11
23	QIAD assay for quantitating a compound's efficacy in elimination of toxic Aβ oligomers. Scientific Reports, 2015, 5, 13222.	1.6	39
24	A Novel 1,4-Dihydropyridine Derivative Improves Spatial Learning and Memory and Modifies Brain Protein Expression in Wild Type and Transgenic APPSweDI Mice. PLoS ONE, 2015, 10, e0127686.	1.1	10
25	Ghrelin agonist does not foster insulin resistance but improves cognition in an Alzheimer's disease mouse model. Scientific Reports, 2015, 5, 11452.	1.6	38
26	Axonal tract tracing for delineating interacting brain regions: implications for Alzheimer's disease-associated memory. Future Neurology, 2014, 9, 89-98.	0.9	3
27	α _{2A} adrenergic receptor promotes amyloidogenesis through disrupting APP-SorLA interaction. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17296-17301.	3.3	63
28	Mildronate improves cognition and reduces amyloidâ€Î² pathology in transgenic Alzheimer's disease mice. Journal of Neuroscience Research, 2014, 92, 338-346.	1.3	8
29	Treatment with D3 Removes Amyloid Deposits, Reduces Inflammation, and Improves Cognition in Aged AβPP/PS1 Double Transgenic Mice. Journal of Alzheimer's Disease, 2013, 34, 609-620.	1.2	35
30	Neurodevelopmental impairment following neonatal hyperoxia in the mouse. Neurobiology of Disease, 2013, 50, 69-75.	2.1	55
31	Treatment with AÎ ² 42 Binding d-Amino Acid Peptides Reduce Amyloid Deposition and Inflammation in APP/PS1 Double Transgenic Mice. Advances in Protein Chemistry and Structural Biology, 2012, 88, 133-152.	1.0	21
32	Age-related brain pathology in Octodon degu: Blood vessel, white matter and Alzheimer-like pathology. Neurobiology of Aging, 2011, 32, 1651-1661.	1.5	58
33	Transgenic AD Model Mice, Effects of Potential Anti-AD Treatments on Inflammation, and Pathology. Journal of Alzheimer's Disease, 2011, 24, 301-313.	1.2	14
34	Oral Treatment with the <scp>d</scp> -Enantiomeric Peptide D3 Improves the Pathology and Behavior of Alzheimer's Disease Transgenic Mice. ACS Chemical Neuroscience, 2010, 1, 639-648.	1.7	107
35	In vitro and inâ€vivo Staining Characteristics of Small, Fluorescent, Aβ42â€Binding <scp>D</scp> â€Enantiomeric Peptides in Transgenic AD Mouse Models. ChemMedChem, 2009, 4, 276-282.	1.6	60
36	Reduction of Alzheimer's Disease Amyloid Plaque Load in Transgenic Mice by D3, a <scp>D</scp> â€Enantiomeric Peptide Identified by Mirror Image Phage Display. ChemMedChem, 2008, 3, 1848-1852.	1.6	115

THOMAS VAN GROEN

#	Article	IF	CITATIONS
37	Deposition of mouse amyloid \hat{l}^2 in human APP/PS1 double and single AD model transgenic mice. Neurobiology of Disease, 2006, 23, 653-662.	2.1	94
38	Transformation of Diffuse β-Amyloid Precursor Protein and β-Amyloid Deposits to Plaques in the Thalamus After Transient Occlusion of the Middle Cerebral Artery in Rats. Stroke, 2005, 36, 1551-1556.	1.0	159
39	Transgenic AD model mice, effects of potential anti-AD treatments on inflammation and pathology. Brain Research Reviews, 2005, 48, 370-378.	9.1	60
40	Transformation of diffuse beta-amyloid precursor protein and beta-amyloid deposits to plaques in the thalamus following transient occlusion of the middle cerebral artery in rats. Journal of Cerebral Blood Flow and Metabolism, 2005, 25, S213-S213.	2.4	2
41	Retrosplenial cortex lesions of area Rgb (but not of area Rga) impair spatial learning and memory in the rat. Behavioural Brain Research, 2004, 154, 483-491.	1.2	76
42	Connections of the retrosplenial granular b cortex in the rat. Journal of Comparative Neurology, 2003, 463, 249-263.	0.9	284
43	The entorhinal cortex of the mouse: Organization of the projection to the hippocampal formation. Hippocampus, 2003, 13, 133-149.	0.9	270
44	Species differences in the projections from the entorhinal cortex to the hippocampus. Brain Research Bulletin, 2002, 57, 553-556.	1.4	74
45	Role of the anterodorsal and anteroventral nuclei of the thalamus in spatial memory in the rat. Behavioural Brain Research, 2002, 132, 19-28.	1.2	113
46	Old rats remember old tricks; memories of the water maze persist for 12 months. Behavioural Brain Research, 2002, 136, 247-255.	1.2	44
47	The role of the laterodorsal nucleus of the thalamus in spatial learning and memory in the rat. Behavioural Brain Research, 2002, 136, 329-337.	1.2	89
48	Entorhinal cortex of the mouse: Cytoarchitectonical organization. Hippocampus, 2001, 11, 397-407.	0.9	47
49	Entorhinal cortex of the mouse: Cytoarchitectonical organization. Hippocampus, 2001, 11, 397-407.	0.9	1
50	Connections of the retrosplenial dysgranular cortex in the rat. Journal of Comparative Neurology, 1992, 315, 200-216.	0.9	277
51	Connections between the retrosplenial cortex and the hippocampal formation in the rat: A review. Hippocampus, 1992, 2, 1-11.	0.9	337
52	Projections from the laterodorsal nucleus of the thalamus to the limbic and visual cortices in the rat. Journal of Comparative Neurology, 1992, 324, 427-448.	0.9	137
53	Connections of the retrosplenial granular a cortex in the rat. Journal of Comparative Neurology, 1990, 300, 593-606.	0.9	318
54	Species differences in hippocampal commissural connections: Studies in rat, guinea pig, rabbit, and cat. Journal of Comparative Neurology, 1988, 267, 322-334.	0.9	52