
Michael G Dunn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3286420/publications.pdf Version: 2024-02-01

MICHAEL C. DUNN

#	Article	IF	CITATIONS
1	Physical crosslinking of collagen fibers: Comparison of ultraviolet irradiation and dehydrothermal treatment. Journal of Biomedical Materials Research Part B, 1995, 29, 1373-1379.	3.0	319
2	Viscoelastic Behavior of Human Connective Tissues: Relative Contribution of Viscous and Elastic Components. Connective Tissue Research, 1983, 12, 59-70.	1.1	209
3	Collagen Fiber Formation in Repair Tissue: Development of Strength and Toughness. Collagen and Related Research, 1985, 5, 481-492.	2.2	192
4	Development of fibroblast-seeded ligament analogs for ACL reconstruction. Journal of Biomedical Materials Research Part B, 1995, 29, 1363-1371.	3.0	186
5	Effect of physical crosslinking methods on collagen-fiber durability in proteolytic solutions. , 1996, 32, 221-226.		183
6	Effect of chemical treatments on tendon cellularity and mechanical properties. , 2000, 49, 134-140.		169
7	The Effect of Autologous Mesenchymal Stem Cells on the Biomechanics and Histology of Gel-Collagen Sponge Constructs Used for Rabbit Patellar Tendon Repair. Tissue Engineering, 2006, 12, 369-379.	4.9	160
8	Viability of fibroblast-seeded ligament analogs after autogenous implantation. Journal of Orthopaedic Research, 1998, 16, 414-420.	1.2	142
9	Anterior cruciate ligament reconstruction using a composite collagenous prosthesis. American Journal of Sports Medicine, 1992, 20, 507-515.	1.9	126
10	In vitro evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants. Journal of Biomedical Materials Research Part B, 1993, 27, 111-117.	3.0	120
11	Mechanical and histological evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants. Journal of Biomedical Materials Research Part B, 1993, 27, 717-728.	3.0	106
12	Optimization of extruded collagen fibers for ACL reconstruction. Journal of Biomedical Materials Research Part B, 1993, 27, 1545-1552.	3.0	101
13	Mechanical Analysis of Hypertrophic Scar Tissue: Structural Basis for Apparent Increased Rigidity. Journal of Investigative Dermatology, 1985, 84, 9-13.	0.3	98
14	Development of Cell-Seeded Patellar Tendon Allografts for Anterior Cruciate Ligament Reconstruction. Tissue Engineering, 2004, 10, 1065-1075.	4.9	96
15	A study of the relationship between mineral content and mechanical properties of turkey gastrocnemius tendon. Journal of Bone and Mineral Research, 1995, 10, 859-867.	3.1	85
16	Preliminary Development of a Novel Resorbable Synthetic Polymer Fiber Scaffold for Anterior Cruciate Ligament Reconstruction. Tissue Engineering, 2004, 10, 43-52.	4.9	85
17	Preliminary development of a collagen-PLA composite for ACL reconstruction. Journal of Applied Polymer Science, 1997, 63, 1423-1428.	1.3	75
18	Synergistic effects of glucose and ultraviolet irradiation on the physical properties of collagen. Journal of Biomedical Materials Research Part B, 2002, 60, 384-391.	3.0	75

MICHAEL G DUNN

#	Article	IF	CITATIONS
19	Effect of Ca/P coating resorption and surgical fit on the bone/implant interface. Journal of Biomedical Materials Research Part B, 1994, 28, 1311-1319.	3.0	71
20	Effects of Hydrogen Peroxide Cleaning Procedures on Bone Graft Osteoinductivity and Mechanical Properties. Cell and Tissue Banking, 2005, 6, 287-298.	0.5	67
21	Physical and mechanical properties of crossâ€linked type I collagen scaffolds derived from bovine, porcine, and ovine tendons. Journal of Biomedical Materials Research - Part A, 2016, 104, 2685-2692.	2.1	65
22	Mechanical Stimulation of Tendon Tissue Engineered Constructs: Effects on Construct Stiffness, Repair Biomechanics, and Their Correlation. Journal of Biomechanical Engineering, 2007, 129, 848-854.	0.6	64
23	Bone Geometry and Strength Measurements in Aging Mice with the oim Mutation. Calcified Tissue International, 1998, 62, 172-176.	1.5	61
24	Changes in mechanical properties and cellularity during long-term culture of collagen fiber ACL reconstruction scaffolds. Journal of Biomedical Materials Research - Part A, 2005, 73A, 388-397.	2.1	54
25	Radioprotection of Tendon Tissue via Crosslinking and Free Radical Scavenging. Clinical Orthopaedics and Related Research, 2008, 466, 1788-1795.	0.7	54
26	Successful Total Meniscus Reconstruction Using a Novel Fiber-Reinforced Scaffold. American Journal of Sports Medicine, 2015, 43, 2528-2537.	1.9	48
27	Design and mechanical evaluation of a novel fiberâ€reinforced scaffold for meniscus replacement. Journal of Biomedical Materials Research - Part A, 2012, 100A, 195-202.	2.1	47
28	One-Year Outcomes of Total Meniscus Reconstruction Using a Novel Fiber-Reinforced Scaffold in an Ovine Model. American Journal of Sports Medicine, 2016, 44, 898-907.	1.9	45
29	Development of a silk and collagen fiber scaffold for anterior cruciate ligament reconstruction. Journal of Materials Science: Materials in Medicine, 2013, 24, 257-265.	1.7	43
30	Glucose stabilizes collagen sterilized with gamma irradiation. Journal of Biomedical Materials Research - Part A, 2003, 67A, 1188-1195.	2.1	39
31	Improved Tendon Radioprotection by Combined Cross-linking and Free Radical Scavenging. Clinical Orthopaedics and Related Research, 2009, 467, 2994-3001.	0.7	37
32	Functional evaluation of collagen fiber scaffolds for ACL reconstruction: Cyclic loading in proteolytic enzyme solutions. Journal of Biomedical Materials Research Part B, 2004, 69A, 164-171.	3.0	36
33	Effect of crosslinking method on collagen fiber-fibroblast interactions. Journal of Applied Polymer Science, 1997, 63, 1493-1498.	1.3	29
34	Biomechanical characterization of a novel collagenâ€hyaluronan infused 3Dâ€printed polymeric device for partial meniscus replacement. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 2457-2465.	1.6	29
35	Wound healing using a collagen matrix: Effect ofDC electrical stimulation. Journal of Biomedical Materials Research Part B, 1988, 22, 191-206.	3.0	28
36	Intraosseous incorporation of composite collagen prostheses designed for ligament reconstruction. Journal of Orthopaedic Research, 1994, 12, 128-137.	1.2	26

MICHAEL G DUNN

#	Article	IF	CITATIONS
37	Partial Meniscus Replacement with a Collagen-Hyaluronan Infused Three-Dimensional Printed Polymeric Scaffold. Tissue Engineering - Part A, 2019, 25, 379-389.	1.6	25
38	A comparison of degradable synthetic polymer fibers for anterior cruciate ligament reconstruction. Journal of Biomedical Materials Research - Part A, 2010, 93A, 738-747.	2.1	23
39	Tissue-Engineered Total Meniscus Replacement With a Fiber-Reinforced Scaffold in a 2-Year Ovine Model. American Journal of Sports Medicine, 2018, 46, 1844-1856.	1.9	22
40	Relationship Between Mechanical Properties and Collagen Structure of Closed and Open Wounds. Journal of Biomechanical Engineering, 1988, 110, 352-356.	0.6	20
41	ACL reconstruction using a novel hybrid scaffold composed of polyarylate fibers and collagen fibers. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2913-2920.	2.1	18
42	Sterilization of tendon allografts: a method to improve strength and stability after exposure to 50ÅkGy gamma radiation. Cell and Tissue Banking, 2013, 14, 349-357.	0.5	18
43	Achieving molecular orientation in thermally extruded 3D printed objects. Biofabrication, 2019, 11, 045004.	3.7	17
44	Negative Outcomes of Poly(<scp>l</scp> -Lactic Acid) Fiber-Reinforced Scaffolds in an Ovine Total Meniscus Replacement Model. Tissue Engineering - Part A, 2016, 22, 1116-1125.	1.6	16
45	The Ovine Model for Meniscus Tissue Engineering: Considerations of Anatomy, Function, Implantation, and Evaluation. Tissue Engineering - Part C: Methods, 2017, 23, 829-841.	1.1	16
46	Radioprotection provides functional mechanics but delays healing of irradiated tendon allografts after ACL reconstruction in sheep. Cell and Tissue Banking, 2013, 14, 655-665.	0.5	15
47	Factors That Influence Transgene Expression and Cell Viability on DNA–PEI-Seeded Collagen Films. Tissue Engineering, 2005, 11, 1398-1406.	4.9	11
48	Carbodiimide cross-linking counteracts the detrimental effects of gamma irradiation on the physical properties of collagen-hyaluronan sponges. Journal of Materials Science: Materials in Medicine, 2018, 29, 75.	1.7	8
49	Interference Screw Versus Suture Endobutton Fixation of a Fiber-Reinforced Meniscus Replacement Device in a Human Cadaveric Knee Model. American Journal of Sports Medicine, 2018, 46, 2133-2141.	1.9	7
50	The Tissue Engineering Approach to Ligament Reconstruction. Materials Research Society Symposia Proceedings, 1993, 331, 13.	0.1	6
51	Tissue-Engineering Strategies for Ligament Reconstruction. MRS Bulletin, 1996, 21, 43-46.	1.7	6
52	Fetal and Neonatal Exposure to the Endocrine Disruptor, Methoxychlor, Reduces Lean Body Mass and Bone Mineral Density and Increases Cortical Porosity. Calcified Tissue International, 2014, 95, 521-529.	1.5	6
53	Collagenous Biocomposites for the Repair of Soft Tissue Injury. Materials Research Society Symposia Proceedings, 1991, 252, 151.	0.1	3
54	THE EFFECT OF COLD GAMMA RADIATION STERILISATION ON THE PROPERTIES OF DEMINERALISED BONE MATRIX. , 2005, , 151-156.		3

MICHAEL G DUNN

#	Article	IF	CITATIONS
55	Preliminary development of a collagen-PLA composite for ACL reconstruction. , 1997, 63, 1423.		3
56	Personalized Fiber-Reinforcement Networks for Meniscus Reconstruction. Journal of Biomechanical Engineering, 2020, 142, .	0.6	3
57	Effect of chemical treatments on tendon cellularity and mechanical properties. , 2000, 49, 134.		2
58	Hydroxyapatite Coatings of Varying Crystallinity. Materials Research Society Symposia Proceedings, 1993, 331, 275.	0.1	1
59	Mechanical Properties of Connective Tissues: Analysis of Genetic Disorders. Annals of the New York Academy of Sciences, 1985, 460, 426-428.	1.8	Ο