List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3286263/publications.pdf Version: 2024-02-01

ANNA MORONI

#	Article	IF	CITATIONS
1	Experimental challenges in ion channel research: uncovering basic principles of permeation and gating in potassium channels. Advances in Physics: X, 2022, 7, .	1.5	2
2	X-ray irradiation triggers immune response in human T-lymphocytes via store-operated Ca2+ entry and NFAT activation. Journal of General Physiology, 2022, 154, .	0.9	3
3	Weak Cation Selectivity in HCN Channels Results From K+-Mediated Release of Na+ From Selectivity Filter Binding Sites. Function, 2022, 3, .	1.1	3
4	Distinct lipid bilayer compositions have general and protein-specific effects on K+ channel function. Journal of General Physiology, 2021, 153, .	0.9	7
5	Magnetogenetics: The Debate is On. Biophysical Journal, 2021, 120, 159a.	0.2	0
6	Codon Bias Can Determine Sorting of a Potassium Channel Protein. Cells, 2021, 10, 1128.	1.8	6
7	Gating movements and ion permeation in HCN4 pacemaker channels. Molecular Cell, 2021, 81, 2929-2943.e6.	4.5	41
8	Do the functional properties of HCN1 mutants correlate with the clinical features in epileptic patients?. Progress in Biophysics and Molecular Biology, 2021, 166, 147-155.	1.4	11
9	Detection of ligand binding to purified HCN channels using fluorescence-based size exclusion chromatography. Methods in Enzymology, 2021, 652, 105-123.	0.4	2
10	Distinct classes of potassium channels fused to GPCRs as electrical signaling biosensors. Cell Reports Methods, 2021, 1, 100119.	1.4	1
11	Structural and functional approaches to studying cAMP regulation of HCN channels. Biochemical Society Transactions, 2021, 49, 2573-2579.	1.6	6
12	Characterization of an N-terminal Nav1.5 channel variant – a potential risk factor for arrhythmias and sudden death?. BMC Medical Genetics, 2020, 21, 227.	2.1	1
13	Light-Regulated Transcription of a Mitochondrial-Targeted K+ Channel. Cells, 2020, 9, 2507.	1.8	3
14	cyclic AMP Regulation and Its Command in the Pacemaker Channel HCN4. Frontiers in Physiology, 2020, 11, 771.	1.3	9
15	A Functional K+ Channel from Tetraselmis Virus 1, a Member of the Mimiviridae. Viruses, 2020, 12, 1107.	1.5	3
16	OPTOGENETICA: CONTROLLARE I NEURONI CON LA LUCE. Istituto Lombardo - Accademia Di Scienze E Lettere - Rendiconti Di Scienze, 2020, , .	0.0	0
17	The Role of HCN Channel Helices D and E in the Modulation of Camp Affinity. Biophysical Journal, 2020, 118, 416a.	0.2	0
18	The mutation L69P in the PAS domain of the hERG potassium channel results in LQTS by trafficking deficiency. Channels, 2020, 14, 163-174.	1.5	1

#	Article	IF	CITATIONS
19	Structural basis for ion selectivity in TMEM175 K+ channels. ELife, 2020, 9, .	2.8	27
20	A small viral potassium ion channel with an inherent inward rectification. Channels, 2019, 13, 124-135.	1.5	5
21	Chimeric HCN Channels for Studying Camp-Induced Conformational Changes in the C-Linker. Biophysical Journal, 2019, 116, 301a.	0.2	0
22	Developing Synthetic Peptides to Regulate Native HCN Channels. Biophysical Journal, 2019, 116, 302a.	0.2	2
23	The Role of HCN Domain in Channel Gating. Biophysical Journal, 2019, 116, 397a.	0.2	0
24	Impact of Codon Usage and Prolyl Isomerization on K Channel Function. Biophysical Journal, 2019, 116, 397a.	0.2	0
25	The HCN domain couples voltage gating and cAMP response in hyperpolarization-activated cyclic nucleotide-gated channels. ELife, 2019, 8, .	2.8	45
26	Phenotypic Spectrum of <i>HCN4</i> Mutations. Circulation Genomic and Precision Medicine, 2018, 11, e002033.	1.6	18
27	Reconstitution and functional characterization of ion channels from nanodiscs in lipid bilayers. Journal of General Physiology, 2018, 150, 637-646.	0.9	34
28	<i>HCN1</i> mutation spectrum: from neonatal epileptic encephalopathy to benign generalized epilepsy and beyond. Brain, 2018, 141, 3160-3178.	3.7	96
29	Assigning Function to the D and E Helices of HCN CNBD. Biophysical Journal, 2018, 114, 303a.	0.2	0
30	A light-gated potassium channel for sustained neuronal inhibition. Nature Methods, 2018, 15, 969-976.	9.0	47
31	Genes for Membrane Transport Proteins: Not So Rare in Viruses. Viruses, 2018, 10, 456.	1.5	17
32	Directional K+ channel insertion in a single phospholipid bilayer: Neutron reflectometry and electrophysiology in the joint exploration of a model membrane functional platform. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1742-1750.	1.1	13
33	A synthetic peptide that prevents cAMP regulation in mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. ELife, 2018, 7, .	2.8	43
34	Mechanical transduction of cytoplasmic-to-transmembrane-domain movements in a hyperpolarization-activated cyclic nucleotide–gated cation channel. Journal of Biological Chemistry, 2018, 293, 12908-12918.	1.6	25
35	lonizing Radiation Induces Morphological Changes and Immunological Modulation of Jurkat Cells. Frontiers in Immunology, 2018, 9, 922.	2.2	25
36	Improving Trafficking and Kinetics of a Synthetic Light-Gated Potassium Channel. Biophysical Journal, 2017, 112, 172a-173a.	0.2	0

#	Article	IF	CITATIONS
37	The small neurotoxin apamin blocks not only small conductance Ca2+ activated K+ channels (SK type) but also the voltage dependent Kv1.3 channel. European Biophysics Journal, 2017, 46, 517-523.	1.2	15
38	Slow but Steady Wins the Race: Dissimilarities among New Dual Inhibitors of the Wild-Type and the V27A Mutant M2 Channels of Influenza A Virus. Journal of Medicinal Chemistry, 2017, 60, 3727-3738.	2.9	20
39	Identification of Intrahelical Bifurcated H-Bonds as a New Type of Gate in K ⁺ Channels. Journal of the American Chemical Society, 2017, 139, 7494-7503.	6.6	17
40	Host dihydrofolate reductase (DHFR)-directed cycloguanil analogues endowed with activity against influenza virus and respiratory syncytial virus. European Journal of Medicinal Chemistry, 2017, 135, 467-478.	2.6	28
41	Exploring New Pharmacological Perspectives of Fusicoccin, A Stabilizer of 14-3-3 - Target Protein Complex. Biophysical Journal, 2017, 112, 339a.	0.2	0
42	Fine Tuning HCN Channel Activity. Biophysical Journal, 2017, 112, 475a.	0.2	0
43	Yeast-Based Screening System for the Selection of Functional Light-Driven K+ Channels. Methods in Molecular Biology, 2017, 1596, 271-285.	0.4	1
44	Conversion of an instantaneous activating K + channel into a slow activating inward rectifier. FEBS Letters, 2017, 591, 295-303.	1.3	1
45	Fusicoccin Activates KAT1 Channels by Stabilizing their Interaction with 14-3-3- Proteins. Plant Cell, 2017, 29, tpc.00375.2017.	3.1	34
46	Ion Channel Activity of Vpu Proteins Is Conserved throughout Evolution of HIV-1 and SIV. Viruses, 2016, 8, 325.	1.5	6
47	Mutation in S6 domain of HCN4 channel in patient with suspected Brugada syndrome modifies channel function. Pflugers Archiv European Journal of Physiology, 2016, 468, 1663-1671.	1.3	25
48	Mechanism of the Pseudoirreversible Binding of Amantadine to the M2 Proton Channel. Journal of the American Chemical Society, 2016, 138, 15345-15358.	6.6	21
49	Engineering of a Light-Gated Potassium Channel. Biophysical Journal, 2016, 110, 6a.	0.2	0
50	X-ray irradiation activates K+ channels via H2O2 signaling. Scientific Reports, 2015, 5, 13861.	1.6	15
51	lsocyanides as Influenzaâ€A Virus Subtype H5N1 Wildâ€∓ype M2 Channel Inhibitors. ChemMedChem, 2015, 10 1837-1845.	' 1.6	12
52	Ritter reaction-mediated syntheses of 2-oxaadamantan-5-amine, a novel amantadine analog. Tetrahedron Letters, 2015, 56, 1272-1275.	0.7	8
53	The sorting of a small potassium channel in mammalian cells can be shifted between mitochondria and plasma membrane. Cell Calcium, 2015, 58, 114-121.	1.1	13
54	Low-dose photon irradiation alters cell differentiation via activation of hIK channels. Pflugers Archiv European Journal of Physiology, 2015, 467, 1835-1849.	1.3	16

#	Article	IF	CITATIONS
55	Engineering a Ca++-Sensitive (Bio)Sensor from the Pore-Module of a Potassium Channel. Sensors, 2015, 15, 4913-4924.	2.1	4
56	New polycyclic dual inhibitors of the wild type and the V27A mutant M2 channel of the influenza A virus with unexpected binding mode. European Journal of Medicinal Chemistry, 2015, 96, 318-329.	2.6	18
57	Engineering of a light-gated potassium channel. Science, 2015, 348, 707-710.	6.0	133
58	Tectonics of a K+ channel: The importance of the N-terminus for channel gating. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 3197-3204.	1.4	8
59	HCN Channels: The Molecular Basis for their cAMP-TRIP8b Regulation. Biophysical Journal, 2015, 108, 366a.	0.2	0
60	Large dsDNA chloroviruses encode diverse membrane transport proteins. Virology, 2015, 479-480, 38-45.	1.1	5
61	Efficacy of psychoeducational family intervention for bipolar I disorder: A controlled, multicentric, real-world study. Journal of Affective Disorders, 2015, 172, 291-299.	2.0	61
62	Viruses infecting marine picoplancton encode functional potassium ion channels. Virology, 2014, 466-467, 103-111.	1.1	15
63	Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness. Nature Chemical Biology, 2014, 10, 457-462.	3.9	50
64	Structural basis for the mutual antagonism of cAMP and TRIP8b in regulating HCN channel function. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14577-14582.	3.3	68
65	Cyclic Nucleotide Mapping of Hyperpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels. ACS Chemical Biology, 2014, 9, 1128-1137.	1.6	27
66	Azapropellanes with Anti-Influenza A Virus Activity. ACS Medicinal Chemistry Letters, 2014, 5, 831-836.	1.3	23
67	Minimal Viral Potassium Channels for Studying Protein/Lipid Interaction. Biophysical Journal, 2014, 106, 299a.	0.2	0
68	The Auxiliary Subunit TRIP8B Inhibits the Binding of CAMP to HCN2 Channels Through an Allosteric Mechanism. Biophysical Journal, 2014, 106, 758a.	0.2	0
69	Pseudo painting/air bubble technique for planar lipid bilayers. Journal of Neuroscience Methods, 2014, 233, 13-17.	1.3	23
70	Viral potassium channels as a robust model system for studies of membrane–protein interaction. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1096-1103.	1.4	28
71	Discovery and Characterization of a Distinct Cyclic Nucleotide Binding Pocket in HCN Channels. Biophysical Journal, 2014, 106, 627a.	0.2	0
72	Effect of Cytosolic pH on Inward Currents Reveals Structural Characteristics of the Proton Transport Cycle in the Influenza A Protein M2 in Cell-Free Membrane Patches of Xenopus oocytes. PLoS ONE, 2014, 9, e107406.	1.1	17

#	Article	IF	CITATIONS
73	Design and Engineering of a Light-Activated Potassium Channel. Biophysical Journal, 2013, 104, 545a.	0.2	Ο
74	Creation of a Reactive Oxygen Species-Insensitive Kcv Channel. Biochemistry, 2013, 52, 3130-3137.	1.2	2
75	Potassium Ion Channels: Could They Have Evolved from Viruses?. Plant Physiology, 2013, 162, 1215-1224.	2.3	19
76	A virus-encoded potassium ion channel is a structural protein in the chlorovirus Paramecium bursaria chlorella virus 1 virion. Journal of General Virology, 2013, 94, 2549-2556.	1.3	21
77	Binding of the auxiliary subunit TRIP8b to HCN channels shifts the mode of action of cAMP. Journal of General Physiology, 2013, 142, 599-612.	0.9	39
78	The voltage-sensing domain of a phosphatase gates the pore of a potassium channel. Journal of General Physiology, 2013, 141, 389-395.	0.9	50
79	Modulation of enrofloxacin binding in OmpF by Mg2+ as revealed by the analysis of fast flickering single-porin current. Journal of General Physiology, 2012, 140, 69-82.	0.9	23
80	Relevance of Lysine Snorkeling in the Outer Transmembrane Domain of Small Viral Potassium Ion Channels. Biochemistry, 2012, 51, 5571-5579.	1.2	9
81	TRIP8B Allosterically Regulates the Ability of cAMP to Enhance the HCN2 Channel Opening. Biophysical Journal, 2012, 102, 130a.	0.2	0
82	Phycodnavirus Potassium Ion Channel Proteins Question the Virus Molecular Piracy Hypothesis. PLoS ONE, 2012, 7, e38826.	1.1	15
83	Structural Organization of DNA in Chlorella Viruses. PLoS ONE, 2012, 7, e30133.	1.1	24
84	Minimal art: Or why small viral K+ channels are good tools for understanding basic structure and function relations. Biochimica Et Biophysica Acta - Biomembranes, 2011, 1808, 580-588.	1.4	35
85	Functional HAK/KUP/KTâ€like potassium transporter encoded by chlorella viruses. Plant Journal, 2011, 68, 977-986.	2.8	22
86	Tetramerization Dynamics of C-terminal Domain Underlies Isoform-specific cAMP Gating in Hyperpolarization-activated Cyclic Nucleotide-gated Channels. Journal of Biological Chemistry, 2011, 286, 44811-44820.	1.6	101
87	TRIP8b Regulates HCN1 Channel Trafficking and Gating through Two Distinct C-Terminal Interaction Sites. Journal of Neuroscience, 2011, 31, 4074-4086.	1.7	72
88	Membrane Anchoring and Interaction between Transmembrane Domains are Crucial for K+ Channel Function. Journal of Biological Chemistry, 2011, 286, 11299-11306.	1.6	19
89	Salt bridges in the miniature viral channel Kcv are important for function. European Biophysics Journal, 2010, 39, 1057-1068.	1.2	21
90	The Proapoptotic Influenza A Virus Protein PB1-F2 Forms a Nonselective Ion Channel. PLoS ONE, 2010, 5, e11112.	1.1	55

#	Article	IF	CITATIONS
91	A functional calcium-transporting ATPase encoded by chlorella viruses. Journal of General Virology, 2010, 91, 2620-2629.	1.3	18
92	The Outer Transmembrane Domain is Involved in a Slow Voltage-Dependent Gate in a K+ Channel. Biophysical Journal, 2010, 98, 700a.	0.2	0
93	Initial Events Associated with Virus PBCV-1 Infection of Chlorella NC64A. Progress in Botany Fortschritte Der Botanik, 2010, 71, 169-183.	0.1	38
94	Chlorella viruses prevent multiple infections by depolarizing the host membrane. Journal of General Virology, 2009, 90, 2033-2039.	1.3	27
95	Fast and slow gating are inherent properties of the pore module of the K+ channel Kcv. Journal of General Physiology, 2009, 134, 219-229.	0.9	37
96	Model Development for the Viral Kcv Potassium Channel. Biophysical Journal, 2009, 96, 485-498.	0.2	35
97	Chlorella virus ATCV-1 encodes a functional potassium channel of 82 amino acids. Biochemical Journal, 2009, 420, 295-305.	1.7	38
98	Selection of Inhibitor-Resistant Viral Potassium Channels Identifies a Selectivity Filter Site that Affects Barium and Amantadine Block. PLoS ONE, 2009, 4, e7496.	1.1	42
99	14â€3â€3 proteins regulate the potassium channel KAT1 by dual modes. Plant Biology, 2008, 10, 231-236.	1.8	33
100	Chlorella viruses evoke a rapid release of K+ from host cells during the early phase of infection. Virology, 2008, 372, 340-348.	1.1	48
101	Transmembrane domain length of viral K+ channels is a signal for mitochondria targeting. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12313-12318.	3.3	41
102	A Plant Homolog of Animal Chloride Intracellular Channels (CLICs) Generates an Ion Conductance in Heterologous Systems. Journal of Biological Chemistry, 2007, 282, 8786-8792.	1.6	39
103	Plant neurobiology: no brain, no gain?. Trends in Plant Science, 2007, 12, 135-136.	4.3	146
104	Molecular Properties of Kcv, a Virus Encoded K+ Channel. Biochemistry, 2007, 46, 1079-1090.	1.2	47
105	Molecular Dynamics Simulation of the Cytosolic Mouth in Kcv-Type Potassium Channels. Biochemistry, 2007, 46, 4826-4839.	1.2	40
106	H+-Pumping Rhodopsin from the Marine Alga Acetabularia. Biophysical Journal, 2006, 91, 1471-1479.	0.2	75
107	Flip-flopping salt bridges gate an ion channel. , 2006, 2, 572-573.		13
108	Elongation of Outer Transmembrane Domain Alters Function of Miniature K+ Channel Kcv. Journal of Membrane Biology, 2006, 210, 21-29.	1.0	12

#	Article	IF	CITATIONS
109	Electrokinetics of Miniature K+ Channel: Open-State V Sensitivity and Inhibition by K+ Driving Force. Journal of Membrane Biology, 2006, 214, 9-17.	1.0	6
110	Potassium Ion Channels of Chlorella Viruses Cause Rapid Depolarization of Host Cells during Infection. Journal of Virology, 2006, 80, 2437-2444.	1.5	45
111	Chlorella virus MT325 encodes water and potassium channels that interact synergistically. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5355-5360.	3.3	43
112	The Potassium Channel KAT1 Is Activated by Plant and Animal 14-3-3 Proteins. Journal of Biological Chemistry, 2006, 281, 35735-35741.	1.6	59
113	KAT1 inactivates at sub-millimolar concentrations of external potassium. Journal of Experimental Botany, 2005, 56, 3103-3110.	2.4	19
114	Ion channels as functional components in sensors of biomedical information. , 2005, , 463-478.		0
115	Structure and Function of a Viral Encoded K+ Channel. , 2005, , 21-32.		0
116	Small potassium ion channel proteins encoded by chlorella viruses. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5318-5324.	3.3	69
117	Long Distance Interactions within the Potassium Channel Pore Are Revealed by Molecular Diversity of Viral Proteins. Journal of Biological Chemistry, 2004, 279, 28443-28449.	1.6	38
118	Genetic diversity in chlorella viruses flanking kcv, a gene that encodes a potassium ion channel protein. Virology, 2004, 326, 150-159.	1.1	19
119	Cloning, functional expression and expression studies of the nitrate transporter gene from Chlorella sorokiniana (strain 211-8k). Plant Molecular Biology, 2003, 52, 855-864.	2.0	17
120	Heteromeric HCN1–HCN4 Channels: A Comparison with Native Pacemaker Channels from the Rabbit Sinoatrial Node. Journal of Physiology, 2003, 549, 347-359.	1.3	185
121	Are chlorella viruses a rich source of ion channel genes?. FEBS Letters, 2003, 552, 2-6.	1.3	12
122	Possible function for virus encoded K+channel Kcv in the replication of chlorella virus PBCV-1. FEBS Letters, 2003, 552, 7-11.	1.3	31
123	The viral potassium channel Kcv: structural and functional features. FEBS Letters, 2003, 552, 12-16.	1.3	47
124	The short N-terminus is required for functional expression of the virus-encoded miniature K+channel Kcv. FEBS Letters, 2002, 530, 65-69.	1.3	39
125	Voltage-Dependence of Virus-encoded Miniature K+ Channel Kcv. Journal of Membrane Biology, 2002, 187, 15-25.	1.0	29
126	Functional characterisation and subcellular localisation of HCN1 channels in rabbit retinal rod photoreceptors. Journal of Physiology, 2002, 542, 89-97.	1.3	56

#	Article	IF	CITATIONS
127	Hyperpolarization-activated Cyclic Nucleotide-gated Channel 1 Is a Molecular Determinant of the Cardiac Pacemaker Current I f. Journal of Biological Chemistry, 2001, 276, 29233-29241.	1.6	95
128	Integrated Allosteric Model of Voltage Gating of Hcn Channels. Journal of General Physiology, 2001, 117, 519-532.	0.9	144
129	C Terminus-mediated Control of Voltage and cAMP Gating of Hyperpolarization-activated Cyclic Nucleotide-gated Channels. Journal of Biological Chemistry, 2001, 276, 29930-29934.	1.6	58
130	Kinetic and ionic properties of the human HCN2 pacemaker channel. Pflugers Archiv European Journal of Physiology, 2000, 439, 618-626.	1.3	37
131	Mutation in Pore Domain Uncovers Cation- and Voltage-Sensitive Recovery from Inactivation in KAT1 Channel. Biophysical Journal, 2000, 78, 1862-1871.	0.2	11
132	A Potassium Channel Protein Encoded by Chlorella Virus PBCV-1. Science, 2000, 287, 1641-1644.	6.0	166
133	Kinetic and ionic properties of the human HCN2 pacemaker channel. Pflugers Archiv European Journal of Physiology, 2000, 439, 618-626.	1.3	52
134	Action of internal pronase on the f-channel kinetics in the rabbit SA node. Journal of Physiology, 1999, 520, 737-744.	1.3	28
135	The human gene coding for HCN2, a pacemaker channel of the heart. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1999, 1446, 419-425.	2.4	68
136	The Impermeant Ion Methylammonium Blocks K + and NH + 4 Currents through KAT1 Channel Differently: Evidence for Ion Interaction in Channel Permeation. Journal of Membrane Biology, 1998, 163, 25-35.	1.0	24
137	Ammonium and Methylammonium Transport in <i>Egeria densa</i> Leaves in Conditions of Different H ⁺ Pump Activity. Botanica Acta, 1997, 110, 369-377.	1.6	6
138	Protein synthesis and Golgi-mediated vesicle traffic is not required to maintain a polarised membrane voltage in the presence of auxin. Protoplasma, 1997, 197, 182-187.	1.0	1
139	Expression of KAT1, a plant inward-rectifying potassium channel, in Xenopus oocytes. Giornale Botanico Italiano (Florence, Italy: 1962), 1995, 129, 1068-1069.	0.0	0
140	Ethanol-Induced Activation of ATP-Dependent Proton Extrusion in Elodea densa Leaves. Plant Physiology, 1992, 100, 1120-1125.	2.3	11
141	PHYTOCHROME PHOTOCONVERSION <i>in vivo</i> . EFFECT OF THE INITIAL Pfr/Ptot RATIO. Photochemistry and Photobiology, 1992, 56, 593-598.	1.3	1
142	Early Effects of Penconazole on H+and K+Transport, Electrolyte Leakage and Transmembrane Electrical Potential inEgeria densaLeaves. Botanica Acta, 1991, 104, 194-199.	1.6	1
143	Cryptochrome, Phytochrome, and Anthocyanin Production. Plant Physiology, 1991, 96, 1079-1085.	2.3	73
144	Light-induced Activation of Electrogenic H+Extrusion and K+Uptake inElodea densaDepends on Photosynthesis and is Mediated by the Plasma membrane H+ATPase. Journal of Experimental Botany, 1989, 40, 343-352.	2.4	56

#	Article	IF	CITATIONS
145	Preparation of Plasma Membrane Vesicles from Black Spruce and Jack Pine Roots. Journal of Plant Physiology, 1989, 135, 467-471.	1.6	4
146	Evidence that H+ extrusion in Elodea densa leaves is mediated by an ATP-driven H+ pump. Plant Science, 1989, 62, 21-28.	1.7	33
147	Gruppo I Bioenergetica - Trasporto. Giornale Botanico Italiano (Florence, Italy: 1962), 1988, 122, 29-52.	0.0	1
148	Plasmalemma Redox Activity and H ⁺ Extrusion. Plant Physiology, 1988, 87, 25-29.	2.3	108
149	Gating Movements and Ion Permeation in HCN4 Pacemaker Channels. SSRN Electronic Journal, 0, , .	0.4	0