Pete Riley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3285827/publications.pdf Version: 2024-02-01

DETE DILEV

#	Article	IF	CITATIONS
1	COVID-19: On the Disparity in Outcomes Between Military and Civilian Populations. Military Medicine, 2023, 188, 311-315.	0.8	3
2	Unifying the validation of ambient solar wind models. Advances in Space Research, 2023, 72, 5275-5286.	2.6	7
3	Quantifying the Uncertainty in CME Kinematics Derived From Geometric Modeling of Heliospheric Imager Data. Space Weather, 2022, 20, .	3.7	6
4	Theoretical Refinements to the Heliospheric Upwind eXtrapolation Technique and Application to in-situ Measurements. Frontiers in Astronomy and Space Sciences, 2022, 8, .	2.8	4
5	Evidence From Galactic Cosmic Rays That the Sun Has Likely Entered a Secular Minimum in Solar Activity. Space Weather, 2022, 20, .	3.7	1
6	The first widespread solar energetic particle event of solar cycle 25 on 2020 November 29. Astronomy and Astrophysics, 2022, 660, A84.	5.1	23
7	COVID-19 deaths: Which explanatory variables matter the most?. PLoS ONE, 2022, 17, e0266330.	2.5	4
8	Constraining Global Coronal Models with Multiple Independent Observables. Astrophysical Journal, 2022, 932, 135.	4.5	12
9	Rate of Change of Large-Scale Solar-Wind Structure. Solar Physics, 2022, 297, .	2.5	4
10	Energetic Proton Propagation and Acceleration Simulated for the Bastille Day Event of 2000 July 14. Astrophysical Journal, 2021, 909, 160.	4.5	15
11	Using a Heliospheric Upwinding eXtrapolation Technique to Magnetically Connect Different Regions of the Heliosphere. Frontiers in Physics, 2021, 9, .	2.1	7
12	On the Sources and Sizes of Uncertainty in Predicting the Arrival Time of Interplanetary Coronal Mass Ejections Using Global MHD Models. Space Weather, 2021, 19, e2021SW002775.	3.7	12
13	Using Parker Solar Probe observations during the first four perihelia to constrain global magnetohydrodynamic models. Astronomy and Astrophysics, 2021, 650, A19.	5.1	21
14	Accurate influenza forecasts using type-specific incidence data for small geographic units. PLoS Computational Biology, 2021, 17, e1009230.	3.2	5
15	Improving Solar Wind Forecasting Using Data Assimilation. Space Weather, 2021, 19, e2020SW002698.	3.7	15
16	Development of a Deep Learning Model for Inversion of Rotational Coronagraphic Images Into 3D Electron Density. Astrophysical Journal Letters, 2021, 920, L30.	8.3	4
17	Forecasting the Ambient Solar Wind with Numerical Models. II. An Adaptive Prediction System for Specifying Solar Wind Speed near the Sun. Astrophysical Journal, 2020, 891, 165.	4.5	24
18	A Computationally Efficient, Time-Dependent Model of the Solar Wind for Use as a Surrogate to Three-Dimensional Numerical Magnetohydrodynamic Simulations. Solar Physics, 2020, 295, 1.	2.5	44

#	Article	IF	CITATIONS
19	The Heliospheric Current Sheet in the Inner Heliosphere Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 47.	7.7	50
20	Quantifying the latitudinal representivity of in situ solar wind observations. Journal of Space Weather and Space Climate, 2020, 10, 8.	3.3	11
21	The Solar Orbiter magnetometer. Astronomy and Astrophysics, 2020, 642, A9.	5.1	136
22	Development of a formalism for computing in situ transits of Earth-directed CMEs – Part 2: Towards a forecasting tool. Annales Geophysicae, 2020, 38, 657-681.	1.6	2
23	Nearâ€Earth Solar Wind Forecasting Using Corotation From L5: The Error Introduced By Heliographic Latitude Offset. Space Weather, 2019, 17, 1105-1113.	3.7	16
24	Can an Unobserved Concentration of Magnetic Flux Above the Poles of the Sun Resolve the Open Flux Problem?. Astrophysical Journal, 2019, 884, 18.	4.5	33
25	Collaborative efforts to forecast seasonal influenza in the United States, 2015–2016. Scientific Reports, 2019, 9, 683.	3.3	90
26	Forecasting national and regional influenza-like illness for the USA. PLoS Computational Biology, 2019, 15, e1007013.	3.2	17
27	Towards Construction of a Solar Wind "Reanalysis―Dataset: Application to the First Perihelion Pass of Parker Solar Probe. Solar Physics, 2019, 294, 1.	2.5	3
28	Predicting the Structure of the Solar Corona and Inner Heliosphere during Parker Solar Probe's First Perihelion Pass. Astrophysical Journal Letters, 2019, 874, L15.	8.3	35
29	Validation of MHD Model Predictions of the Corona with LASCO-C2 Polarized Brightness Images. Solar Physics, 2019, 294, 1.	2.5	6
30	Statistics of Extreme Space Weather Events. , 2018, , 115-138.		7
31	Extreme Space Weather Events: From Cradle to Grave. Space Science Reviews, 2018, 214, 1.	8.1	97
32	Sun-to-Earth MHD Simulation of the 2000 July 14 "Bastille Day―Eruption. Astrophysical Journal, 2018, 856, 75.	4.5	118
33	Long-term variations in the heliosphere. Proceedings of the International Astronomical Union, 2018, 13, 108-114.	0.0	2
34	Assessing the Quality of Models of the Ambient Solar Wind. Space Weather, 2018, 16, 1644-1667.	3.7	44
35	The State of the Solar Wind, Magnetosphere, and Ionosphere During the Maunder Minimum. Proceedings of the International Astronomical Union, 2018, 13, 247-250.	0.0	1
36	Solar Sources of Interplanetary Magnetic Clouds Leading to Helicity Prediction. Space Weather, 2018, 16, 1668-1685.	3.7	0

#	Article	IF	CITATIONS
37	Coronal Mass Ejection Data Clustering and Visualization of Decision Trees. Astrophysical Journal, Supplement Series, 2018, 236, 14.	7.7	16
38	Predicting the corona for the 21 August 2017 total solar eclipse. Nature Astronomy, 2018, 2, 913-921.	10.1	94
39	Forecasting the Arrival Time of Coronal Mass Ejections: Analysis of the CCMC CME Scoreboard. Space Weather, 2018, 16, 1245-1260.	3.7	94
40	Coronal Magnetic Field Models. Space Science Reviews, 2017, 210, 249-274.	8.1	82
41	Global solar wind variations over the last four centuries. Scientific Reports, 2017, 7, 41548.	3.3	52
42	Forecasting the properties of the solar wind using simple pattern recognition. Space Weather, 2017, 15, 526-540.	3.7	37
43	Probabilistic Solar Wind and Geomagnetic Forecasting Using an Analogue Ensemble or "Similar Day― Approach. Solar Physics, 2017, 292, 69.	2.5	31
44	The Solar Energetic Particle Event of 2010 August 14: Connectivity with the Solar Source Inferred from Multiple Spacecraft Observations and Modeling. Astrophysical Journal, 2017, 838, 51.	4.5	45
45	Extreme geomagnetic storms: Probabilistic forecasts and their uncertainties. Space Weather, 2017, 15, 53-64.	3.7	77
46	On the Link between the Release of Solar Energetic Particles Measured at Widespread Heliolongitudes and the Properties of the Associated Coronal Shocks. Astrophysical Journal, 2017, 847, 103.	4.5	30
47	The Open Flux Problem. Astrophysical Journal, 2017, 848, 70.	4.5	135
48	Origins of the Ambient Solar Wind: Implications for Space Weather. Space Science Reviews, 2017, 212, 1345-1384.	8.1	107
49	Probabilistic Solar Wind Forecasting Using Large Ensembles of Nearâ€5un Conditions With a Simple Oneâ€Dimensional "Upwind―Scheme. Space Weather, 2017, 15, 1461-1474.	3.7	33
50	The Grad–Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: First Applications. Solar Physics, 2017, 292, 1.	2.5	6
51	The Physical Processes of CME/ICME Evolution. Space Science Reviews, 2017, 212, 1159-1219.	8.1	179
52	Sunward Strahl: A Method to Unambiguously Determine Open Solar Flux from In Situ Spacecraft Measurements Using Suprathermal Electron Data. Journal of Geophysical Research: Space Physics, 2017, 122, 10,980.	2.4	34
53	Particle Radiation Sources, Propagation and Interactions in Deep Space, at Earth, the Moon, Mars, and Beyond: Examples of Radiation Interactions and Effects. Space Science Reviews, 2017, 212, 1069-1106.	8.1	18
54	The Role of Empirical Space-Weather Models (in a World of Physics-Based Numerical Simulations). Proceedings of the International Astronomical Union, 2017, 13, 254-257.	0.0	3

Pete Riley

#	Article	IF	CITATIONS
55	The Physical Processes of CME/ICME Evolution. Space Sciences Series of ISSI, 2017, , 165-225.	0.0	0
56	Origins of the Ambient Solar Wind: Implications for Space Weather. Space Sciences Series of ISSI, 2017, , 41-80.	0.0	1
57	Particle Radiation Sources, Propagation and Interactions in Deep Space, at Earth, the Moon, Mars, and Beyond: Examples of Radiation Interactions and Effects. Space Sciences Series of ISSI, 2017, , 257-294.	0.0	0
58	Extreme Space Weather Events: From Cradle to Grave. Space Sciences Series of ISSI, 2017, , 489-512.	0.0	1
59	Intra-Weekly Variations of Influenza-Like Illness in Military Populations. Military Medicine, 2016, 181, 364-368.	0.8	6
60	Diagnostics of Coronal Magnetic Fields through the Hanle Effect in UV and IR Lines. Frontiers in Astronomy and Space Sciences, 2016, 3, .	2.8	25
61	Nearâ€Earth heliospheric magnetic field intensity since 1750: 1. Sunspot and geomagnetic reconstructions. Journal of Geophysical Research: Space Physics, 2016, 121, 6048-6063.	2.4	33
62	MHD simulation of the Bastille day event. AIP Conference Proceedings, 2016, , .	0.4	5
63	A data-driven analysis of interplanetary coronal mass ejecta and magnetic flux ropes. , 2016, , .		3
64	An Empirically Driven Time-Dependent Model of the Solar Wind. Journal of Physics: Conference Series, 2016, 719, 012012.	0.4	25
65	Nearâ€Earth heliospheric magnetic field intensity since 1750: 2. Cosmogenic radionuclide reconstructions. Journal of Geophysical Research: Space Physics, 2016, 121, 6064-6074.	2.4	19
66	Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center. Space Weather, 2016, 14, 592-611.	3.7	38
67	Factors affecting the geoeffectiveness of shocks and sheaths at 1ÂAU. Journal of Geophysical Research: Space Physics, 2016, 121, 10861-10879.	2.4	63
68	Slow Solar Wind: Observations and Modeling. Space Science Reviews, 2016, 201, 55-108.	8.1	147
69	Carrington Class Solar Events and How to Recognize Them. Proceedings of the International Astronomical Union, 2016, 12, 204-210.	0.0	1
70	PROPERTIES OF THE FAST FORWARD SHOCK DRIVEN BY THE 2012 JULY 23 EXTREME CORONAL MASS EJECTION. Astrophysical Journal, 2016, 819, 57.	4.5	34
71	LONGITUDINAL PROPERTIES OF A WIDESPREAD SOLAR ENERGETIC PARTICLE EVENT ON 2014 FEBRUARY 25: EVOLUTION OF THE ASSOCIATED CME SHOCK. Astrophysical Journal, 2016, 819, 72.	4.5	72
72	3D ELECTRON DENSITY DISTRIBUTIONS IN THE SOLAR CORONA DURING SOLAR MINIMA: ASSESSMENT FOR MORE REALISTIC SOLAR WIND MODELING. Astrophysical Journal, 2015, 814, 68.	4.5	11

#	Article	IF	CITATIONS
73	PARTICLE ACCELERATION AT LOW CORONAL COMPRESSION REGIONS AND SHOCKS. Astrophysical Journal, 2015, 810, 97.	4.5	55
74	On the lognormality of historical magnetic storm intensity statistics: Implications for extremeâ€event probabilities. Geophysical Research Letters, 2015, 42, 6544-6553.	4.0	72
75	Broken Power-law Distributions from Low Coronal Compression Regions or Shocks. Journal of Physics: Conference Series, 2015, 642, 012025.	0.4	5
76	Early Characterization of the Severity and Transmissibility of Pandemic Influenza Using Clinical Episode Data from Multiple Populations. PLoS Computational Biology, 2015, 11, e1004392.	3.2	8
77	The solar magnetic activity band interaction and instabilities that shape quasi-periodic variability. Nature Communications, 2015, 6, 6491.	12.8	97
78	On the role played by magnetic expansion factor in the prediction of solar wind speed. Space Weather, 2015, 13, 154-169.	3.7	84
79	Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC. Space Weather, 2015, 13, 316-338.	3.7	85
80	INFERRING THE STRUCTURE OF THE SOLAR CORONA AND INNER HELIOSPHERE DURING THE MAUNDER MINIMUM USING GLOBAL THERMODYNAMIC MAGNETOHYDRODYNAMIC SIMULATIONS. Astrophysical Journal, 2015, 802, 105.	4.5	65
81	Coronal Pseudo-Streamer and Bipolar Streamer Observed by SOHO/UVCS in March 2008. Solar Physics, 2015, 290, 2043-2054.	2.5	23
82	Coronal Magnetic Field Models. Space Sciences Series of ISSI, 2015, , 249-274.	0.0	0
83	THE SOLAR ENERGETIC PARTICLE EVENT ON 2013 APRIL 11: AN INVESTIGATION OF ITS SOLAR ORIGIN AND LONGITUDINAL SPREAD. Astrophysical Journal, 2014, 797, 8.	4.5	76
84	A Multi-Observatory Inter-Comparison of Line-of-Sight Synoptic Solar Magnetograms. Solar Physics, 2014, 289, 769-792.	2.5	123
85	Comparative Study of MHD Modeling of the Background Solar Wind. Solar Physics, 2014, 289, 1783-1801.	2.5	67
86	Synthesis of 3â€D Coronalâ€Solar Wind Energetic Particle Acceleration Modules. Space Weather, 2014, 12, 323-328.	3.7	23
87	Study of Corotating Interaction Regions in the Ascending Phase of the Solar Cycle: Multi-spacecraft Observations. Solar Physics, 2013, 285, 201-216.	2.5	7
88	Using Statistical Multivariable Models to Understand the Relationship Between Interplanetary Coronal Mass Ejecta and Magnetic Flux Ropes. Solar Physics, 2013, 284, 217-233.	2.5	17
89	Solar origins of solar wind properties during the cycle 23 solar minimum and rising phase of cycle 24. Journal of Advanced Research, 2013, 4, 221-228.	9.5	17
90	MHD Modeling of the Solar Corona and Inner Heliosphere: Comparison with Observations. Geophysical Monograph Series, 2013, , 159-167.	0.1	11

#	Article	IF	CITATIONS
91	On the application of ensemble modeling techniques to improve ambient solar wind models. Journal of Geophysical Research: Space Physics, 2013, 118, 600-607.	2.4	27
92	Ensemble modeling of the ambient solar wind. AIP Conference Proceedings, 2013, , .	0.4	4
93	Coronal and heliospheric modeling using flux-evolved maps. AIP Conference Proceedings, 2013, , .	0.4	6
94	The challenge in making models of fast CMEs. AIP Conference Proceedings, 2013, , .	0.4	6
95	Large scale solar wind structure: Non-dipolar features and consequences. , 2013, , .		0
96	Multiple Estimates of Transmissibility for the 2009 Influenza Pandemic Based on Influenza-like-Illness Data from Small US Military Populations. PLoS Computational Biology, 2013, 9, e1003064.	3.2	16
97	Probing the Solar Magnetic Field with a Sun-Grazing Comet. Science, 2013, 340, 1196-1199.	12.6	55
98	MAGNETOHYDRODYNAMIC SIMULATIONS OF INTERPLANETARY CORONAL MASS EJECTIONS. Astrophysical Journal, 2013, 777, 76.	4.5	58
99	Transtensional deformation and structural control of contiguous but independent magmatic systems: Mono-Inyo Craters, Mammoth Mountain, and Long Valley Caldera, California. , 2012, 8, 740-751.		24
100	Modeling the global structure of the heliosphere during the recent solar minimum: Model improvements and unipolar streamers. , 2012, , .		2
101	PIV wave propagation investigation of non-linear losses through 90 degree bends in a thermoacoustic engine's feedback loop. , 2012, , .		2
102	Corotating interaction regions during the recent solar minimum: The power and limitations of global MHD modeling. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 83, 1-10.	1.6	116
103	Interpreting some properties of CIRs and their associated shocks during the last two solar minima using global MHD simulations. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 83, 11-21.	1.6	12
104	Underestimates of magnetic flux in coupled MHD model solar wind solutions. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 83, 22-31.	1.6	23
105	On the probability of occurrence of extreme space weather events. Space Weather, 2012, 10, .	3.7	166
106	Interplanetary Signatures of Unipolar Streamers and the Origin of the Slow Solar Wind. Solar Physics, 2012, 277, 355-373.	2.5	81
107	Interplanetary conditions: lessons from this minimum. Proceedings of the International Astronomical Union, 2011, 7, 168-178.	0.0	3
108	Global MHD Modeling of the Solar Corona and Inner Heliosphere for the Whole Heliosphere Interval. Solar Physics, 2011, 274, 361-377.	2.5	114

#	Article	IF	CITATIONS
109	Mapping Solar Wind Streams from the Sun to 1 AU: A Comparison of Techniques. Solar Physics, 2011, 270, 575-592.	2.5	65
110	Comparison of Observations at ACE and Ulysses with Enlil Model Results: Stream Interaction Regions During Carrington Rotations 2016 – 2018. Solar Physics, 2011, 273, 179-203.	2.5	53
111	The Whole Heliosphere Interval in the Context of a Long and Structured Solar Minimum: An Overview from Sun to Earth. Solar Physics, 2011, 274, 5-27.	2.5	53
112	Comparing eclipse observations of the 2008 August 1 solar corona with an MHD model prediction. Astronomy and Astrophysics, 2010, 513, A45.	5.1	46
113	Cone model-based SEP event calculations for applications to multipoint observations. Advances in Space Research, 2010, 46, 1-21.	2.6	61
114	Characterization of the slow wind in the outer corona. Advances in Space Research, 2010, 46, 1400-1408.	2.6	29
115	From the Sun to the Earth: The 13 May 2005 Coronal Mass Ejection. Solar Physics, 2010, 265, 49-127.	2.5	63
116	The Three-Dimensional Structure of the Inner Heliosphere. AIP Conference Proceedings, 2010, , .	0.4	3
117	On the relationship between coronal heating, magnetic flux, and the density of the solar wind. Journal of Geophysical Research, 2010, 115, .	3.3	13
118	Interpretation of the crossâ€correlation function of ACE and STEREO solar wind velocities using a global MHD Model. Journal of Geophysical Research, 2010, 115, .	3.3	10
119	The Solar Wind at 1 AU During the Declining Phase ofÂSolar Cycle 23: Comparison of 3D Numerical Model Results with Observations. Solar Physics, 2009, 254, 155-183.	2.5	67
120	Effects of the Weak Polar Fields of Solar Cycle 23: Investigation Using OMNI for the STEREO Mission Period. Solar Physics, 2009, 256, 345-363.	2.5	51
121	Derivation of fluid conservation relations to infer nearâ€5un properties of coronal mass ejections from in situ measurements. Journal of Geophysical Research, 2009, 114, .	3.3	2
122	Global MHD Modeling of the Solar Corona and Inner Heliosphere for the Whole Heliosphere Interval. Proceedings of the International Astronomical Union, 2009, 5, 491-493.	0.0	3
123	Theoretical modeling for the stereo mission. Space Science Reviews, 2008, 136, 565-604.	8.1	40
124	Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physicsâ€based schemes with 8 years of L1 observations. Space Weather, 2008, 6, .	3.7	105
125	Ambient solar wind's effect on ICME transit times. Geophysical Research Letters, 2008, 35, .	4.0	32
126	Largeâ€Scale Coronal Density and Abundance Structures and Their Association with Magnetic Field Structure. Astrophysical Journal, 2008, 683, 1168-1179.	4.5	8

#	Article	IF	CITATIONS
127	Comparison of Heliospheric In Situ Data with the Quasiâ€steady Solar Wind Models. Astrophysical Journal, 2008, 674, 1158-1166.	4.5	16
128	Using Global Simulations to Relate the Threeâ€Part Structure of Coronal Mass Ejections to In Situ Signatures. Astrophysical Journal, 2008, 672, 1221-1227.	4.5	57
129	An Alternative Interpretation of the Relationship between the Inferred Open Solar Flux and the Interplanetary Magnetic Field. Astrophysical Journal, 2007, 667, L97-L100.	4.5	45
130	"Bursty―Reconnection Following Solar Eruptions: MHD Simulations and Comparison with Observations. Astrophysical Journal, 2007, 655, 591-597.	4.5	59
131	On the origin of near-radial magnetic fields in the heliosphere: Numerical simulations. Journal of Geophysical Research, 2007, 112, n/a-n/a.	3.3	29
132	Modeling corotating interaction regions: From the Sun to 1AU. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69, 32-42.	1.6	18
133	A Comparison between Global Solar Magnetohydrodynamic and Potential Field Source Surface Model Results. Astrophysical Journal, 2006, 653, 1510-1516.	4.5	227
134	The Latitudinal Excursion of Coronal Magnetic Field Lines in Response to Differential Rotation: MHD Simulations. Astrophysical Journal, 2006, 642, L69-L72.	4.5	28
135	On the Rates of Coronal Mass Ejections: Remote Solar and In Situ Observations. Astrophysical Journal, 2006, 647, 648-653.	4.5	77
136	Modeling interplanetary coronal mass ejections. Advances in Space Research, 2006, 38, 535-546.	2.6	12
137	CME Theory and Models. Space Science Reviews, 2006, 123, 251-302.	8.1	336
138	The Effects of Differential Rotation on the Magnetic Structure of the Solar Corona: Magnetohydrodynamic Simulations. Astrophysical Journal, 2005, 625, 463-473.	4.5	67
139	Fitting flux ropes to a global MHD solution: a comparison of techniques. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66, 1321-1331.	1.6	129
140	Initial coupling of coronal and heliospheric numerical magnetohydrodynamic codes. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66, 1311-1320.	1.6	112
141	Magnetohydrodynamic Modeling of Interplanetary CMEs. IEEE Transactions on Plasma Science, 2004, 32, 1415-1424.	1.3	8
142	Numerical simulation of the 12 May 1997 interplanetary CME event. Journal of Geophysical Research, 2004, 109, .	3.3	244
143	Kinematic Treatment of Coronal Mass Ejection Evolution in the Solar Wind. Astrophysical Journal, 2004, 600, 1035-1042.	4.5	155
144	Using an MHD simulation to interpret the global context of a coronal mass ejection observed by two spacecraft. Journal of Geophysical Research, 2003, 108, .	3.3	93

#	Article	IF	CITATIONS
145	Properties of high-latitude CME-driven disturbances during Ulysses second northern polar passage. Geophysical Research Letters, 2003, 30, .	4.0	44
146	Flux cancellation and coronal mass ejections. Physics of Plasmas, 2003, 10, 1971-1978.	1.9	146
147	Dynamical evolution of the inner heliosphere approaching solar activity maximum: interpreting Ulysses observations using a global MHD model. Annales Geophysicae, 2003, 21, 1347-1357.	1.6	19
148	Merging of coronal and heliospheric numerical two-dimensional MHD models. Journal of Geophysical Research, 2002, 107, SSH 14-1-SSH 14-11.	3.3	106
149	Modeling the heliospheric current sheet: Solar cycle variations. Journal of Geophysical Research, 2002, 107, SSH 8-1.	3.3	66
150	Evidence of Posteruption Reconnection Associated with Coronal Mass Ejections in the Solar Wind. Astrophysical Journal, 2002, 578, 972-978.	4.5	52
151	The solar wind at solar maximum: comparisons of EISCAT IPS and in situ observations. Annales Geophysicae, 2002, 20, 1291-1309.	1.6	12
152	An empirically-driven global MHD model of the solar corona and inner heliosphere. Journal of Geophysical Research, 2001, 106, 15889-15901.	3.3	241
153	Investigation of the polytropic relationship between density and temperature within interplanetary coronal mass ejections using numerical simulations. Journal of Geophysical Research, 2001, 106, 8291-8300.	3.3	18
154	Solar wind observations over Ulysses' first full polar orbit. Journal of Geophysical Research, 2000, 105, 10419-10433.	3.3	421
155	A prolonged He+enhancement within a coronal mass ejection in the solar wind. Geophysical Research Letters, 1999, 26, 161-164.	4.0	78
156	Relationship between Ulysses plasma observations and solar observations during the Whole Sun Month campaign. Journal of Geophysical Research, 1999, 104, 9871-9879.	3.3	31
157	Magnetohydrodynamic modeling of the solar corona during Whole Sun Month. Journal of Geophysical Research, 1999, 104, 9809-9830.	3.3	282
158	The Threeâ€dimensional Coronal Magnetic Field during Whole Sun Month. Astrophysical Journal, 1999, 520, 871-879.	4.5	38
159	Solar Wind Electron Proton Alpha Monitor (SWEPAM) for the Advanced Composition Explorer. Space Science Reviews, 1998, 86, 563-612.	8.1	844
160	Ulysses' return to the slow solar wind. Geophysical Research Letters, 1998, 25, 1-4.	4.0	250
161	Overexpanding coronal mass ejections at high heliographic latitudes: Observations and simulations. Journal of Geophysical Research, 1998, 103, 1941-1954.	3.3	86
162	Ulysses' rapid crossing of the polar coronal hole boundary. Journal of Geophysical Research, 1998, 103, 1955-1967.	3.3	58

#	Article	lF	CITATIONS
163	Do coronal mass ejections implode in the solar wind?. Geophysical Research Letters, 1998, 25, 1529-1532.	4.0	27
164	Ion energy equation for the high-speed solar wind: Ulysses observations. Journal of Geophysical Research, 1998, 103, 14547-14557.	3.3	18
165	A twoâ€dimensional simulation of the radial and latitudinal evolution of a solar wind disturbance driven by a fast, highâ€pressure coronal mass ejection. Journal of Geophysical Research, 1997, 102, 14677-14685.	3.3	78
166	Ulysses solar wind plasma observations at high latitudes. Advances in Space Research, 1997, 20, 15-22.	2.6	15
167	Interplanetary observations of solarg-mode oscillations?. Geophysical Research Letters, 1996, 23, 1541-1544.	4.0	14
168	The acceleration of slow coronal mass ejections in the high-speed solar wind. Geophysical Research Letters, 1996, 23, 2867-2870.	4.0	56
169	The tilts of corotating interaction regions at midheliographic latitudes. Journal of Geophysical Research, 1996, 101, 24349-24357.	3.3	32
170	Quantifying the effect of ICME removal and observation age for in situ solar wind data assimilation. Space Weather, 0, , .	3.7	3