Liping Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3285404/publications.pdf

Version: 2024-02-01

LIDING WANG

#	Article	IF	CITATIONS
1	Tunable charge-transport polarity in thienothiophene–bisoxoindolinylidene-benzodifurandione copolymers for high-performance field-effect transistors. Journal of Materials Chemistry C, 2022, 10, 2671-2680.	5.5	5
2	Developing Grapheneâ€Based Moiré Heterostructures for Twistronics. Advanced Science, 2022, 9, e2103170.	11.2	21
3	Synthesis, characterization, and their field-effect properties of azaisoindigo-based conjugated polymers with versatile alkoxycarbonyl substituents. Polymer, 2021, 215, 123347.	3.8	5
4	Incorporation of Cyanoâ€Substituted Aromatic Blocks into Naphthalene Diimideâ€Based Copolymers: Toward Unipolar nâ€Channel Fieldâ€Effect Transistors. Small Science, 2021, 1, 2100016.	9.9	4
5	2D Organic Radical Conjugated Skeletons with Paramagnetic Behaviors. Advanced Materials Interfaces, 2021, 8, 2100943.	3.7	3
6	Covalent organic frameworks: Design, synthesis, and performance for photocatalytic applications. Nano Today, 2021, 40, 101247.	11.9	57
7	Surface Engineering of Substrates for Chemical Vapor Deposition Growth of Graphene and Applications in Electronic and Spintronic Devices. Chemistry of Materials, 2021, 33, 8960-8989.	6.7	9
8	Molecular engineering of (<i>E</i>)-1,2-bis(3-cyanothiophene-2-yl)ethene-based polymeric semiconductors for unipolar n-channel field-effect transistors. Polymer Chemistry, 2020, 11, 7340-7348.	3.9	14
9	Remarkable effect of π-skeleton conformation in finitely conjugated polymer semiconductors. Journal of Materials Chemistry C, 2020, 8, 9055-9063.	5.5	1
10	High-Electron Mobility Tetrafluoroethylene-Containing Semiconducting Polymers. Chemistry of Materials, 2020, 32, 2330-2340.	6.7	18
11	Primary Nucleation-Dominated Chemical Vapor Deposition Growth for Uniform Graphene Monolayers on Dielectric Substrate. Journal of the American Chemical Society, 2019, 141, 11004-11008.	13.7	52
12	Influence of Backbone Regioregularity on High-Mobility Conjugated Polymers Based on Alkylated Dithienylacrylonitrile. ACS Applied Materials & Interfaces, 2019, 11, 43416-43424.	8.0	11
13	Small-molecule semiconductors containing dithienylacrylonitrile for high-performance organic field-effect transistors. Journal of Materials Chemistry C, 2019, 7, 11457-11464.	5.5	1
14	Gas-Flow-Driven Aligned Growth of Graphene on Liquid Copper. Chemistry of Materials, 2019, 31, 1231-1236.	6.7	31
15	Synthesis and Performance of (E)-3-Phenyl-2-(thiophen-2-yl)acrylonitrile-Based Small-Molecule Semiconductors. Organic Materials, 2019, 01, 078-087.	2.0	0
16	The stability of the compounds formed in the process of removal Pb(II), Cu(II) and Cd(II) by steelmaking slag in an acidic aqueous solution. Journal of Environmental Management, 2019, 231, 41-48.	7.8	49
17	Polymer Fieldâ€Effect Transistors: Wellâ€Balanced Ambipolar Conjugated Polymers Featuring Mild Glass Transition Temperatures Toward Highâ€Performance Flexible Fieldâ€Effect Transistors (Adv. Mater.) Tj ETQq1 1	0.7814814	rgBJT /Overlo
18	Wellâ€Balanced Ambipolar Conjugated Polymers Featuring Mild Glass Transition Temperatures Toward Highâ€Performance Flexible Fieldã€Effect Transistors. Advanced Materials, 2018, 30, 1705286.	21.0	70

LIPING WANG

#	Article	IF	CITATIONS
19	Syntheses, structures and properties of asymmetric thiophene-containing pentacene-like heteroacenes organic semiconductors. Materials Chemistry and Physics, 2018, 212, 155-160.	4.0	5
20	Heavy metal contamination and ecological risk of farmland soils adjoining steel plants in Tangshan, Hebei, China. Environmental Science and Pollution Research, 2018, 25, 1231-1242.	5.3	20
21	Chalcogenophene-Sensitive Charge Carrier Transport Properties in A–D–A′′–D Type NBDO-Based Copolymers for Flexible Field-Effect Transistors. Macromolecules, 2018, 51, 8662-8671.	4.8	12
22	Donor–Acceptor Conjugated Copolymers Containing Difluorothienylethylene-Bridged Methyleneoxindole or Methyleneazaoxindole Acceptor Units: Synthesis, Properties, and Their Application in Field-Effect Transistors. Macromolecules, 2018, 51, 7093-7103.	4.8	20
23	Tuning Frontier Orbital Energetics of Azaisoindigoâ€Based Polymeric Semiconductors to Enhance the Chargeâ€Transport Properties. Advanced Electronic Materials, 2017, 3, 1700078.	5.1	34
24	Ambipolar tetrafluorodiphenylethene-based donor–acceptor copolymers: synthesis, properties, backbone conformation and fluorine-induced conformational locks. Polymer Chemistry, 2017, 8, 879-889.	3.9	12
25	Novel vinylene-bridged donor–acceptor copolymers: synthesis, characterization, properties and effect of cyano substitution. Materials Chemistry Frontiers, 2017, 1, 2103-2110.	5.9	1
26	Fluorinated Dithienylethene–Naphthalenediimide Copolymers for High-Mobility n-Channel Field-Effect Transistors. Macromolecules, 2017, 50, 6098-6107.	4.8	48
27	Regioirregular ambipolar naphthalenediimideâ€based alternating polymers: Synthesis, characterization, and application in fieldâ€effect transistors. Journal of Polymer Science Part A, 2017, 55, 3627-3635.	2.3	14
28	Fieldâ€Effect Transistors: Tuning Frontier Orbital Energetics of Azaisoindigoâ€Based Polymeric Semiconductors to Enhance the Chargeâ€Transport Properties (Adv. Electron. Mater. 11/2017). Advanced Electronic Materials, 2017, 3, .	5.1	0
29	Highly planar cross-conjugated alternating polymers with multiple conformational locks: synthesis, characterization and their field-effect properties. Journal of Materials Chemistry C, 2016, 4, 9266-9275.	5.5	31
30	Synthesis and Characterization of Dibenzo[<i>a</i> , <i>d</i>]cycloheptenâ€5â€one Derivatives for Lightâ€Emitting Diodes. Chinese Journal of Chemistry, 2015, 33, 948-954.	4.9	5
31	Preparation and Doping Effect of Surface Modified ZnS Nanoparticles on Liquid Crystal Nanocomposite System. Molecular Crystals and Liquid Crystals, 2015, 623, 104-112.	0.9	1
32	Preparation and optical properties of alloyed Zn x Cd 1―x S/alginate core/shell nanoparticles. Luminescence, 2015, 30, 86-90.	2.9	1
33	Synthesis and photoluminescent properties of ZnS:Cd nanoparticles and their phase-transferred nanocomposite with polyvinylpyrrolidone. Composite Interfaces, 2015, 22, 75-84.	2.3	1
34	Preparation and optical properties of nanocomposite film of CdS:Cu with biomacromolecules. Polymer Composites, 2014, 35, 477-481.	4.6	1
35	Tuning the light response of organic field-effect transistors using fluorographene nanosheets as an interface modification layer. Journal of Materials Chemistry C, 2014, 2, 6484.	5.5	22
36	Bitrialkylsilylethynyl thienoacenes: synthesis, molecular conformation and crystal packing, and their field-effect properties. Journal of Materials Chemistry C, 2013, 1, 6403.	5.5	6

LIPING WANG

#	Article	IF	CITATIONS
37	Synthesis, structure, optoelectronic properties of novel zinc Schiff-base complexes. Science Bulletin, 2013, 58, 2733-2740.	1.7	32
38	Effects of 2-Hydroxypropyl Acrylate on Electro-Optical Properties of Polymer-Dispersed Liquid Crystal Films and Elasticity of Polymer Network. Molecular Crystals and Liquid Crystals, 2010, 518, 3-11.	0.9	5
39	Synthesis, Structure, Electronic State, and Luminescent Properties of Novel Blueâ€Lightâ€Emitting Arylâ€Substituted 9,9â€Di(4â€{diâ€ <i>p</i> â€tolyl)aminophenyl)fluorenes. Advanced Functional Materials, 2008 18, 2335-2347.	, 14.9	29
40	Synthesis and mesomorphic properties of two series of new azineâ€ŧype liquid crystals. Liquid Crystals, 2008, 35, 581-585.	2.2	22
41	Studies on the electroâ€optical properties of chiral nematic liquid crystal/aerosil particle composites. Liquid Crystals, 2008, 35, 49-54.	2.2	13
42	Electrically induced and thermally erased properties of sideâ€chain liquid crystalline polymer/liquid crystal/chiral dopant composites. Liquid Crystals, 2007, 34, 949-954.	2.2	5
43	Effect of a chiral dopant on the electro-optical properties of polymer-dispersed liquid-crystal films. Journal of Applied Polymer Science, 2007, 105, 2185-2189.	2.6	20
44	Supramolecular inclusion complexes of biodegradable cholesteryl-(ε-caprolactone)n functionalized polymer with α-cyclodextrin. Journal of Applied Polymer Science, 2007, 105, 1700-1706.	2.6	2
45	Wide-band reflective polarizers from cholesteric liquid crystals with stable optical properties. Journal of Applied Polymer Science, 2007, 105, 2973-2977.	2.6	34
46	The pH-dependence of photochemical intermediates of O and P in bacteriorhodopsin by continuous light. Biochemical and Biophysical Research Communications, 2006, 343, 899-903.	2.1	1