List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3285276/publications.pdf Version: 2024-02-01

XIN HUANC

#	Article	IF	CITATIONS
1	Engineering Au Nanoclusters for Relay Luminescence Enhancement with Aggregation-Induced Emission. Nanomaterials, 2022, 12, 777.	1.9	2
2	Protective Mechanism of a Layer-by-Layer-Assembled Artificial Cell Wall on Probiotics. Journal of Physical Chemistry B, 2022, 126, 1933-1940.	1.2	2
3	Programmable spatial organization of liquid-phase condensations. CheM, 2022, 8, 784-800.	5.8	20
4	A Class of Biocompatible Dye–Protein Complex Optical Nanoprobes. ACS Nano, 2022, 16, 328-339.	7.3	12
5	Eukaryotic Cell Biomimetics: Construction of Eukaryotic Cell Biomimetics: Hierarchical Polymersomesâ€inâ€Proteinosome Multicompartment with Enzymatic Reactions Modulated Protein Transportation (Small 7/2021). Small, 2021, 17, 2170026.	5.2	0
6	Membranization of Coacervates into Artificial Phagocytes with Predation toward Bacteria. ACS Nano, 2021, 15, 10048-10057.	7.3	35
7	Reversible Lightâ€Responsive Coacervate Microdroplets with Rapid Regulation of Enzymatic Reaction Rate. ChemSystemsChem, 2021, 3, e2100006.	1.1	13
8	Rücktitelbild: Construction of Hybrid Biâ€microcompartments with Exocytosisâ€Inspired Behavior toward Fast Temperatureâ€Modulated Transportation of Living Organisms (Angew. Chem. 38/2021). Angewandte Chemie, 2021, 133, 21240-21240.	1.6	0
9	Construction of Hybrid Biâ€microcompartments with Exocytosisâ€Inspired Behavior toward Fast Temperatureâ€Modulated Transportation of Living Organisms. Angewandte Chemie - International Edition, 2021, 60, 20795-20802.	7.2	16
10	Wholeâ€Cellâ€Based Photosynthetic Biohybrid Systems for Energy and Environmental Applications. ChemPlusChem, 2021, 86, 1021-1036.	1.3	9
11	Construction of Hybrid Biâ€microcompartments with Exocytosisâ€Inspired Behavior toward Fast Temperatureâ€Modulated Transportation of Living Organisms. Angewandte Chemie, 2021, 133, 20963-20970.	1.6	0
12	A <scp>pH Selfâ€Monitoring</scp> Heterogeneous Multicompartmental Proteinosome with Spatiotemporal Regulation of Insulin Transportation. Chinese Journal of Chemistry, 2021, 39, 3386-3392.	2.6	9
13	Construction of Eukaryotic Cell Biomimetics: Hierarchical Polymersomesâ€inâ€Proteinosome Multicompartment with Enzymatic Reactions Modulated Protein Transportation. Small, 2021, 17, e2005749.	5.2	26
14	Life-Inspired Endogenous Dynamic Behavior of Lipid Droplet-like Microcompartments in Artificial Adipocyte-like Structures. CCS Chemistry, 2021, 3, 2782-2794.	4.6	15
15	Construction of coacervates in proteinosome hybrid microcompartments with enhanced cascade enzymatic reactions. Chemical Communications, 2021, 57, 11713-11716.	2.2	9
16	Engineering proteinosomes with renewable predatory behaviour towards living organisms. Materials Horizons, 2020, 7, 157-163.	6.4	36
17	Photosynthetic hydrogen production by droplet-based microbial micro-reactors under aerobic conditions. Nature Communications, 2020, 11, 5985.	5.8	49
18	A Removable Artificial Cell Wall for Withstanding Ciprofloxacin. Macromolecular Bioscience, 2020, 20, 2000185.	2.1	4

#	Article	IF	CITATIONS
19	Enzyme Conformation Influences the Performance of Lipaseâ€powered Nanomotors. Angewandte Chemie, 2020, 132, 21266-21273.	1.6	9
20	New protein-based smart materials. , 2020, , 415-436.		2
21	Enzyme Conformation Influences the Performance of Lipaseâ€powered Nanomotors. Angewandte Chemie - International Edition, 2020, 59, 21080-21087.	7.2	58
22	Polymer-chlorella cells conjugating with aggregation-induced functionality switch towards hydrogen evolution. Science China Technological Sciences, 2020, 63, 1416-1425.	2.0	10
23	Near-Infrared-Induced Contractile Proteinosome Microreactor with a Fast Control on Enzymatic Reactions. ACS Applied Materials & Interfaces, 2020, 12, 41079-41087.	4.0	21
24	Bioinspired Proteinâ€Based Assembling: Toward Advanced Lifeâ€Like Behaviors. Advanced Materials, 2020, 32, e2001436.	11.1	46
25	Fusionâ€Induced Structural and Functional Evolution in Binary Emulsion Communities. Angewandte Chemie, 2020, 132, 17101-17108.	1.6	5
26	Fusionâ€Induced Structural and Functional Evolution in Binary Emulsion Communities. Angewandte Chemie - International Edition, 2020, 59, 16953-16960.	7.2	23
27	Biomimicry of Cellular Motility and Communication Based on Synthetic Softâ€Architectures. Small, 2020, 16, e1907680.	5.2	58
28	Selfâ€Limiting Assembly of Au Nanoparticles Induced by Localized Dynamic Metalâ€Phenolic Interactions. European Journal of Inorganic Chemistry, 2020, 2020, 4477-4482.	1.0	1
29	Interfacial self-assembly of gold nanoparticle-polymer nanoconjugates into microcapsules with near-infrared light modulated biphasic catalysis efficiency. Chemical Communications, 2019, 55, 10760-10763.	2.2	10
30	A facile design of smart silica nanocarriers via surface-initiated RAFT polymerization as a dual-stimuli drug release platform. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 581, 123797.	2.3	19
31	Spatial Organization in Proteinaceous Membrane‣tabilized Coacervate Protocells. Small, 2019, 15, e1902893.	5.2	50
32	Engineered borate ester conjugated protein-polymer nanoconjugates for pH-responsive drug delivery. Materials Science and Engineering C, 2019, 104, 109914.	3.8	26
33	Dynamic Behaviour in Microcompartments. Chemistry - A European Journal, 2019, 25, 16440-16450.	1.7	9
34	Lipaseâ€Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angewandte Chemie, 2019, 131, 8076-8080.	1.6	19
35	Lipaseâ€Powered Mesoporous Silica Nanomotors for Triglyceride Degradation. Angewandte Chemie - International Edition, 2019, 58, 7992-7996.	7.2	78
36	Rücktitelbild: Autonomic Behaviors in Lipaseâ€Active Oil Droplets (Angew. Chem. 4/2019). Angewandte Chemie, 2019, 131, 1232-1232.	1.6	0

#	Article	IF	CITATIONS
37	Enzymeâ€Modulated Anaerobic Encapsulation of Chlorella Cells Allows Switching from O 2 to H 2 Production. Angewandte Chemie, 2019, 131, 4032-4035.	1.6	10
38	The construction of thiol-functionalized DNAsomes with small molecules response and protein release. Materials Science and Engineering C, 2019, 99, 1153-1163.	3.8	12
39	Frontispiece: Dynamic Behaviour in Microcompartments. Chemistry - A European Journal, 2019, 25, .	1.7	1
40	Autonomic Behaviors in Lipaseâ€Active Oil Droplets. Angewandte Chemie - International Edition, 2019, 58, 1067-1071.	7.2	50
41	Enzymeâ€Modulated Anaerobic Encapsulation of <i>Chlorella</i> Cells Allows Switching from O ₂ to H ₂ Production. Angewandte Chemie - International Edition, 2019, 58, 3992-3995.	7.2	48
42	Autonomic Behaviors in Lipaseâ€Active Oil Droplets. Angewandte Chemie, 2019, 131, 1079-1083.	1.6	24
43	A facile approach for the reduction of 4â€nitrophenol and degradation of congo red using gold nanoparticles or laccase decorated hybrid inorganic nanoparticles/polymer-biomacromolecules vesicles. Materials Science and Engineering C, 2019, 94, 524-533.	3.8	59
44	Design and Construction of Hybrid Microcapsules with Higherâ€Order Structure and Multiple Functions. Advanced Science, 2018, 5, 1700460.	5.6	19
45	In Situ Selfâ€Assembly of Coacervate Microdroplets into Viable Artificial Cell Wall with Heritability. Advanced Functional Materials, 2018, 28, 1705699.	7.8	26
46	Multifunctional and Programmable Modulated Interface Reactions on Proteinosomes. ACS Applied Materials & Interfaces, 2018, 10, 38565-38573.	4.0	20
47	Singleâ€Cell Nanometric Coating Towards Wholeâ€Cellâ€Based Biodevices and Biosensors. ChemistrySelect, 2018, 3, 7208-7221.	0.7	12
48	Signal-On Electrochemiluminescence of Self-Ordered Molybdenum Oxynitride Nanotube Arrays for Label-Free Cytosensing. Analytical Chemistry, 2018, 90, 10858-10864.	3.2	31
49	Preparation of Magnetically Recyclable Yolk/Shell Fe _x O _y /PdPt@CeO ₂ Nanoreactors with Enhanced Catalytic Activity. Chemistry - an Asian Journal, 2017, 12, 1400-1407.	1.7	8
50	Coordinated Membrane Fusion of Proteinosomes by Contact-Induced Hydrogel Self-Healing. Small, 2017, 13, 1700467.	5.2	38
51	Efficient Way to Generate Protein-Based Nanoparticles by in-Situ Photoinitiated Polymerization-Induced Self-Assembly. ACS Macro Letters, 2017, 6, 689-694.	2.3	47
52	In Situ Gelation-Induced Death of Cancer Cells Based on Proteinosomes. Biomacromolecules, 2017, 18, 2446-2453.	2.6	19
53	One-step preparation of magnetic recyclable quinary graphene hydrogels with high catalytic activity. Journal of Colloid and Interface Science, 2017, 491, 72-79.	5.0	15
54	Construction of biological hybrid microcapsules with defined permeability towards programmed release of biomacromolecules. Chemical Communications, 2017, 53, 11678-11681.	2.2	25

#	Article	IF	CITATIONS
55	Construction of polymer coated core–shell magnetic mesoporous silica nanoparticles with triple responsive drug delivery. Polymer Chemistry, 2017, 8, 5852-5864.	1.9	73
56	In Situ Generation of Coreâ€6hell Proteinâ€Based Microcapsules with Regulated Ion Absorbance Capacity. ChemistrySelect, 2017, 2, 6249-6253.	0.7	5
57	Single-step fabrication of multi-compartmentalized biphasic proteinosomes. Chemical Communications, 2017, 53, 8537-8540.	2.2	26
58	Hierarchical Proteinosomes for Programmed Release of Multiple Components. Angewandte Chemie - International Edition, 2016, 55, 7095-7100.	7.2	116
59	Hierarchical Proteinosomes for Programmed Release of Multiple Components. Angewandte Chemie, 2016, 128, 7211-7216.	1.6	39
60	CdS-modified porous foam nickel for label-free highly efficient detection of cancer cells. RSC Advances, 2016, 6, 32874-32880.	1.7	3
61	Programmable Modulation of Membrane Permeability of Proteinosome upon Multiple Stimuli Responses. ACS Macro Letters, 2016, 5, 961-966.	2.3	27
62	Bio-inspired engineering proteinosomes with a cell-wall-like protective shell by self-assembly of a metal-chelated complex. Chemical Communications, 2016, 52, 13803-13806.	2.2	30
63	Preparation of pH-responsive mesoporous hydroxyapatite nanoparticles for intracellular controlled release of an anticancer drug. Biomaterials Science, 2016, 4, 272-280.	2.6	68
64	Engineering Functional Polymer Capsules toward Smart Nanoreactors. Chemical Reviews, 2016, 116, 1053-1093.	23.0	337
65	Intracellular pH-responsive mesoporous hydroxyapatite nanoparticles for targeted release of anticancer drug. RSC Advances, 2015, 5, 30920-30928.	1.7	29
66	Membrane Engineering of Colloidosome Microcompartments Using Partially Hydrophobic Mesoporous Silica Nanoparticles. Langmuir, 2014, 30, 15047-15052.	1.6	41
67	Synthetic cellularity based on non-lipid micro-compartments and protocell models. Current Opinion in Chemical Biology, 2014, 22, 1-11.	2.8	153
68	Spontaneous Growth and Division in Selfâ€Reproducing Inorganic Colloidosomes. Small, 2014, 10, 3291-3298.	5.2	80
69	Membrane-mediated cascade reactions by enzyme–polymer proteinosomes. Chemical Communications, 2014, 50, 6278-6280.	2.2	95
70	Design and Construction of Higher-Order Structure and Function in Proteinosome-Based Protocells. Journal of the American Chemical Society, 2014, 136, 9225-9234.	6.6	164
71	Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells. Nature Communications, 2013, 4, 2239.	5.8	418
72	Progress on multi-compartment polymeric capsules. Polymer Chemistry, 2013, 4, 435-443.	1.9	91

#	Article	IF	CITATIONS
73	Tailored Synthesis of Intelligent Polymer Nanocapsules: An Investigation of Controlled Permeability and pH-Dependent Degradability. ACS Nano, 2012, 6, 9718-9726.	7.3	63
74	Synthesis of Heteroâ€Polymer Functionalized Nanocarriers by Combining Surfaceâ€Initiated ATRP and RAFT Polymerization. Small, 2012, 8, 3579-3583.	5.2	44
75	Synthesis of Well-Defined Photo-Cross-Linked Polymeric Nanocapsules by Surface-Initiated RAFT Polymerization. Macromolecules, 2011, 44, 8351-8360.	2.2	58
76	Artificial selenoenzymes: Designed and redesigned. Chemical Society Reviews, 2011, 40, 1171-1184.	18.7	167
77	Construction of a smart glutathione peroxidase mimic with temperature responsive activity based on block copolymer. Soft Matter, 2011, 7, 2521.	1.2	23
78	A modulatory bifunctional artificial enzyme with both SOD and GPx activities based on a smart star-shaped pseudo-block copolymer. Soft Matter, 2010, 6, 5342.	1.2	42
79	Design of Artificial Selenoenzymes Based on Macromolecular Scaffolds. Macromolecular Bioscience, 2010, 10, 1385-1396.	2.1	21
80	Construction of Smart Glutathione Peroxidase Mimic Based on Hydrophilic Block Copolymer with Temperature Responsive Activity. Macromolecular Bioscience, 2009, 9, 1202-1210.	2.1	24
81	Incorporation of glutathione peroxidase active site into polymer based on imprinting strategy. Biosensors and Bioelectronics, 2009, 25, 657-660.	5.3	26
82	Smart microgel catalyst with modulatory glutathione peroxidase activity. Soft Matter, 2009, 5, 1905.	1.2	61
83	Construction of the Active Site of Clutathione Peroxidase on Polymer-Based Nanoparticles. Biomacromolecules, 2008, 9, 1467-1473.	2.6	34
84	Tellurium-Based Polymeric Surfactants as a Novel Seleno-Enzyme Model with High Activity. Macromolecular Rapid Communications, 2006, 27, 2101-2106.	2.0	30