List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3284967/publications.pdf Version: 2024-02-01

WENLONGL

#	Article	IF	CITATIONS
1	Design and Analysis of Wireless Resolver for Wireless Switched Reluctance Motors. IEEE Transactions on Industrial Electronics, 2023, 70, 2221-2230.	5.2	13
2	Long-Range Wireless Power Drive Using Magnetic Extender. IEEE Transactions on Transportation Electrification, 2023, 9, 1897-1909.	5.3	5
3	Wireless Power and Drive Transfer Using Orthogonal Bipolar Couplers and Separately Excited Modulation. IEEE Transactions on Industrial Electronics, 2022, 69, 3492-3502.	5.2	7
4	An Integrated Wireless Motor System Using Laminated Magnetic Coupler and Commutative-Resonant Control. IEEE Transactions on Industrial Electronics, 2022, 69, 4342-4352.	5.2	17
5	Output-Controllable Efficiency-Optimized Wireless Power Transfer Using Hybrid Modulation. IEEE Transactions on Industrial Electronics, 2022, 69, 4627-4636.	5.2	19
6	Wireless Power and Drive Transfer for Piping Network. IEEE Transactions on Industrial Electronics, 2022, 69, 2345-2356.	5.2	30
7	Wireless Energy Trading in Traffic Internet. IEEE Transactions on Power Electronics, 2022, 37, 4831-4841.	5.4	19
8	A Novel Quasi-3D Analytical Model for Axial Flux Motors Considering Magnetic Saturation. IEEE Transactions on Energy Conversion, 2022, 37, 1358-1368.	3.7	14
9	Extended Kalman Filter Based Inductance Estimation for Dual Three-Phase Permanent Magnet Synchronous Motors Under the Single Open-Phase Fault. IEEE Transactions on Energy Conversion, 2022, 37, 1134-1144.	3.7	11
10	Decoupled Estimation Scheme for PMSMs Toward Accurate Inductance Modeling. IEEE Transactions on Magnetics, 2022, 58, 1-5.	1.2	2
11	Design and Analysis of Demand-Customized Selective Wireless Power Transfer System. IEEE Transactions on Industrial Electronics, 2022, 69, 13451-13461.	5.2	4
12	Noise and Vibration Prediction of a Six-Phase IPMSM in a Single Open-Phase Failure Under a Negative Sequence Current Compensated Fault Tolerant Control Mode. IEEE Transactions on Magnetics, 2022, 58, 1-6.	1.2	3
13	Open-Phase Fault Modeling for Dual Three-Phase PMSM Using Vector Space Decomposition and Negative Sequence Components. IEEE Transactions on Magnetics, 2022, 58, 1-6.	1.2	5
14	Maximum Power Tracking for Magnetic Field Editing-Based Omnidirectional Wireless Power Transfer. IEEE Transactions on Power Electronics, 2022, 37, 12901-12912.	5.4	14
15	Computation-Efficient Solution to Open-Phase Fault Tolerant Control of Dual Three-Phase Interior PMSMs With Maximized Torque and Minimized Ripple. IEEE Transactions on Power Electronics, 2021, 36, 4488-4499.	5.4	25
16	Structural Analysis of Single-Sided Axial-Flux Permanent Magnet Machines With Different Magnetic Materials. IEEE Transactions on Magnetics, 2021, 57, 1-5.	1.2	9
17	Parameter identification of nonlinear structural systems through frequency response sensitivity analysis. Nonlinear Dynamics, 2021, 104, 3975.	2.7	9
18	Dual Reference Frame Based Current Harmonic Minimization for Dual Three-Phase PMSM Considering Inverter Voltage Limit. IEEE Transactions on Power Electronics, 2021, 36, 8055-8066.	5.4	26

#	Article	IF	CITATIONS
19	Current Injection-Based Simultaneous Stator Winding and PM Temperature Estimation for Dual Three-Phase PMSMs. IEEE Transactions on Industry Applications, 2021, 57, 4933-4945.	3.3	17
20	Multireference Frame Based Open-Phase Fault Modeling and Control for Asymmetrical Six-Phase Interior Permanent Magnet Motors. IEEE Transactions on Power Electronics, 2021, 36, 11712-11725.	5.4	19
21	Novel Machine Parameter Estimation Scheme Toward Accurate Maximum Torque Production for Dual Three-Phase PMSMs. IEEE Transactions on Transportation Electrification, 2021, 7, 2715-2727.	5.3	5
22	Improvement of Electromagnetic Force and Acceleration in an Asymmetrical Star-Delta Winding IPMSM through Stator and Rotor Geometrical Modifications. , 2021, , .		2
23	Review of recent progresses on gallium nitride transistor in power conversion application. International Journal of Sustainable Energy, 2020, 39, 88-100.	1.3	9
24	Efficient Permanent Magnet Temperature Modeling and Estimation for Dual Three-Phase PMSM Considering Inverter Nonlinearity. IEEE Transactions on Power Electronics, 2020, 35, 7328-7340.	5.4	25
25	Design and Analysis of a Magnetless Linear Variable Reluctance Motor With Modular Mover Units for Electric Propulsion. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	6
26	Wireless Energy-On-Demand Using Magnetic Quasi-Resonant Coupling. IEEE Transactions on Power Electronics, 2020, 35, 9057-9069.	5.4	21
27	Quantitative Comparison of Wireless Power Transfer Using HTS and Copper Coils. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-6.	1.1	5
28	Demagnetization Analysis of Interior Permanent Magnet Machines Under Integrated Charging Operation. IEEE Transactions on Industry Applications, 2019, 55, 5204-5213.	3.3	17
29	All-utensil domestic induction heating system. Energy Conversion and Management, 2019, 195, 1035-1043.	4.4	18
30	Current Injection-Based Multi-parameter Estimation for Dual Three-Phase IPMSM Considering VSI Nonlinearity. IEEE Transactions on Transportation Electrification, 2019, 5, 405-415.	5.3	54
31	Open-Phase Fault Modeling and Optimized Fault-Tolerant Control of Dual Three-Phase Permanent Magnet Synchronous Machines. IEEE Transactions on Power Electronics, 2019, 34, 11116-11127.	5.4	62
32	Dual DC current injectionâ€based stator winding temperature tracking for dual threeâ€phase permanent magnet synchronous machine using Kalman filter. IET Electric Power Applications, 2019, 13, 1726-1733.	1.1	11
33	Current Injection-based Simultaneous Stator Winding and PM Temperature Estimation for Dual Three-phase PMSMs. , 2019, , .		2
34	Machine Parameter-Independent Maximum Torque Per Ampere Control for Dual Three-Phase PMSMs. IEEE Transactions on Transportation Electrification, 2019, 5, 1430-1440.	5.3	12
35	A Five-Phase Doubly Fed Doubly Salient HTS Linear Motor for Vertical Transportation. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	8
36	A Superconducting Vernier Motor for Electric Ship Propulsion. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-6.	1.1	19

#	Article	IF	CITATIONS
37	A Phase-Decoupled Flux-Reversal Linear Generator for Low-Speed Oscillatory Energy Conversion Using Impedance Matching Strategy. IEEE Transactions on Industrial Electronics, 2018, 65, 7590-7599.	5.2	8
38	A Superconducting Linear Variable Reluctance Machine for Urban Transportation Systems. IEEE Transactions on Applied Superconductivity, 2018, 28, 1-5.	1.1	7
39	Investigation of Phase Angle Displacements in Six-Phase PMSM with Concentrated Windings for Reduced MMF Harmonics. , 2018, , .		6
40	Investigation of on-Line Parameter Estimation for Interior PMSMs Considering Current Injection and Machine Operating Conditions. , 2018, , .		2
41	A New High-Temperature Superconducting Vernier Permanent-Magnet Machine for Wind Turbines. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	15
42	A New Linear Vernier Permanent-Magnet Machine Using High-Temperature Superconducting DC Field Excitation. IEEE Transactions on Applied Superconductivity, 2017, 27, 1-5.	1.1	5
43	Doubly Salient Dual-PM Linear Machines for Regenerative Shock Absorbers. IEEE Transactions on Magnetics, 2017, 53, 1-5.	1.2	11
44	Design and Analysis of Electromagnetic Gears With Variable Gear Ratios. IEEE Transactions on Magnetics, 2017, 53, 1-6.	1.2	8
45	A Hybrid-Excited Vernier Permanent Magnet Machine Using Homopolar Topology. IEEE Transactions on Magnetics, 2017, 53, 1-7.	1.2	25
46	Design and analysis of a new parallel-hybrid-excited linear vernier machine for oceanic wave power generation. Applied Energy, 2017, 208, 878-888.	5.1	18
47	Wireless DC Motor Drives with Selectability and Controllability. Energies, 2017, 10, 49.	1.6	30
48	SLAM: Depth image information for mapping and inertial navigation system for localization. , 2016, , .		4
49	Dead-beat direct torque and flux control based on sliding-mode stator flux observer for PMSM in electric vehicles. , 2015, , .		6
50	Overview of wireless power transfer for electric vehicle charging. , 2013, , .		80
51	Genetic Algorithm Based Cost-emission Optimization of Unit Commitment Integrating with Gridable Vehicles. Journal of Asian Electric Vehicles, 2012, 10, 1567-1573.	0.4	6
52	Optimal design of a double-stator permanent magnet brushless machine with series magnetic circuit. , 2010, , .		0
53	A new modular flux-switching permanent-magnet machine using fault-tolerant teeth. , 2010, , .		9
54	A new DC micro-grid system using renewable energy and electric vehicles for smart energy delivery. , 2010, , .		35

4

#	Article	IF	CITATIONS
55	A double-stator permanent magnet brushless machine system for electric variable transmission in hybrid electric vehicles. , 2010, , .		10
56	Overview of Permanent-Magnet Brushless Drives for Electric and Hybrid Electric Vehicles. IEEE Transactions on Industrial Electronics, 2008, 55, 2246-2257.	5.2	1,186
57	An optimal solar-thermoelectric hybrid energy system for hybrid electric vehicles. , 2008, , .		7
58	A Permanent-magnet double-stator integrated-starter-generator for hybrid electric vehicles. , 2008, , .		8
59	Chaoization of a Single-Phase Induction Motor for Washing Machines. Conference Record - IAS Annual Meeting (IEEE Industry Applications Society), 2006, , .	0.0	3
60	Microstepping control of ultrasonic stepping motors. IEEE Transactions on Industry Applications, 2006, 42, 436-442.	3.3	7
61	A new three-phase doubly salient permanent magnet machine for wind power generation. IEEE Transactions on Industry Applications, 2006, 42, 53-60.	3.3	126
62	Application of chaotic modulation to ac motors for harmonic suppression. , 2006, , .		7
63	Development of a New Brushless Doubly Fed Doubly Salient Machine for Wind Power Generation. IEEE Transactions on Magnetics, 2006, 42, 3455-3457.	1.2	106
64	Design and Control of a PM Brushless Hybrid Generator for Wind Power Application. IEEE Transactions on Magnetics, 2006, 42, 3497-3499.	1.2	63
65	Design and Analysis of a Stator-Doubly-Fed Doubly-Salient Permanent-Magnet Machine for Automotive Engines. IEEE Transactions on Magnetics, 2006, 42, 3470-3472.	1.2	52
66	A Finite Element–Analytical Method for Electromagnetic Field Analysis of Electric Machines With Free Rotation. IEEE Transactions on Magnetics, 2006, 42, 3392-3394.	1.2	25
67	Neural Network-Based Residual Capacity Indicator for Nickel-Metal Hydride Batteries in Electric Vehicles. IEEE Transactions on Vehicular Technology, 2005, 54, 1705-1712.	3.9	70
68	Chaoization of switched reluctance motor drives. , 2005, , .		0
69	Design of permanent magnets to chaoize PM synchronous motors for industrial mixers. , 2005, , .		1
70	Application of Chaotic Motion to Industrial Compactors. , 2005, , .		1
71	An Improved Method for Discriminating ECG Signals using Typical Nonlinear Dynamic Parameters and Recurrence Quantification Analysis in Cardiac Disease Therapy. , 2005, 2005, 2459-62.		5
72	Design of permanent magnets to guarantee frequency-changing startup for PM synchronous		0

machines. , 2005, , .

#	Article	IF	CITATIONS
73	Design of Permanent Magnets to Avoid Chaos in Doubly Salient PM Machines. IEEE Transactions on Magnetics, 2004, 40, 3048-3050.	1.2	13
74	Hopf Bifurcation and Chaos in Synchronous Reluctance Motor Drives. IEEE Transactions on Energy Conversion, 2004, 19, 296-302.	3.7	64
75	Spectral analysis of a new six-phase pole-changing induction motor drive for electric vehicles. IEEE Transactions on Industrial Electronics, 2003, 50, 123-131.	5.2	67
76	A new design method and half-step operation for ultrasonic stepping motors. IEEE Transactions on Industry Applications, 2003, 39, 953-960.	3.3	6
77	Control and operation of a new 8/6-pole doubly salient permanent-magnet motor drive. IEEE Transactions on Industry Applications, 2003, 39, 1363-1371.	3.3	81
78	A novel stator doubly fed doubly salient permanent magnet brushless machine. IEEE Transactions on Magnetics, 2003, 39, 3001-3003.	1.2	73
79	Modeling, analysis, and experimentation of chaos in a switched reluctance drive system. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2003, 50, 712-716.	0.1	31
80	Design of permanent magnets to avoid chaos in pm synchronous machines. IEEE Transactions on Magnetics, 2003, 39, 2995-2997.	1.2	56
81	Design and analysis of a new multiphase polygonal-winding permanent-magnet brushless DC machine. IEEE Transactions on Magnetics, 2002, 38, 3258-3260.	1.2	18
82	Subharmonics and chaos in switched reluctance motor drives. IEEE Transactions on Energy Conversion, 2002, 17, 73-78.	3.7	45
83	Nonlinear magnetic circuit analysis for a novel stator doubly fed doubly salient machine. IEEE Transactions on Magnetics, 2002, 38, 2382-2384.	1.2	92
84	Transient analysis of a new outer-rotor permanent-magnet brushless DC drive using circuit-field-torque coupled time-stepping finite-element method. IEEE Transactions on Magnetics, 2002, 38, 1297-1300.	1.2	61
85	Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles. IEEE Transactions on Industrial Electronics, 2002, 49, 677-684.	5.2	99
86	Design and analysis of a new doubly salient permanent magnet motor. IEEE Transactions on Magnetics, 2001, 37, 3012-3020.	1.2	185
87	Static characteristics of a new doubly salient permanent magnet motor. IEEE Transactions on Energy Conversion, 2001, 16, 20-25.	3.7	136
88	Design and analysis of a new permanent magnet brushless DC machine. IEEE Transactions on Magnetics, 2000, 36, 3353-3356.	1.2	18
89	Acoustic noise radiated by PWM-controllel induction machine drives. IEEE Transactions on Industrial Electronics, 2000, 47, 880-889.	5.2	140
90	Experimental stabilization of chaos in a voltage-mode DC drive system. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2000, 47, 1093-1095.	0.1	63

#	Article	IF	CITATIONS
91	Analysis of chaos in current-mode-controlled DC drive systems. IEEE Transactions on Industrial Electronics, 2000, 47, 67-76.	5.2	85
92	Nonlinear varying-network magnetic circuit analysis for doubly salient permanent-magnet motors. IEEE Transactions on Magnetics, 2000, 36, 339-348.	1.2	149
93	A novel sliding-mode observer for indirect position sensing of switched reluctance motor drives. IEEE Transactions on Industrial Electronics, 1999, 46, 390-397.	5.2	65
94	An overview of power electronics in electric vehicles. IEEE Transactions on Industrial Electronics, 1997, 44, 3-13.	5.2	353
95	An advanced permanent magnet motor drive system for battery-powered electric vehicles. IEEE Transactions on Vehicular Technology, 1996, 45, 180-188.	3.9	60
96	Optimal-efficiency control for constant-power operation of phase-decoupling permanent-magnet brushless motor drives. , 0, , .		1
97	Soft-switching vector control for resonant snubber based inverters. , 0, , .		6
98	A novel two-quadrant zero-voltage transition converter for DC motor drives. , 0, , .		5
99	Nonlinear modeling and spectral analysis of Cuk converters. , 0, , .		0
100	Advanced conduction angle control of permanent magnet brushless motor drives. , 0, , .		0
101	Bidirectional soft-switching converter-fed DC motor drives. , 0, , .		21
102	A new zero-voltage-transition converter for switched reluctance motor drives. , 0, , .		8
103	Static characteristics of a new doubly salient permanent magnet motor. , 0, , .		1
104	Neuro-fuzzy dual-mode control of travelling-wave ultrasonic motors. , 0, , .		1
105	Subharmonics and chaos in switched reluctance motor drives. , 0, , .		1
106	Development of doubly salient permanent magnet motor flywheel energy storage for building integrated photovoltaic system. , 0, , .		5
107	Design and control of a new ultrasonic stepping motor. , 0, , .		3
108	Control and operation of a new 8/6-pole split-winding doubly salient permanent magnet motor drive. , 0, , .		0

#	Article	IF	CITATIONS
109	A novel stator doubly fed doubly salient permanent magnet brushless machine. , 0, , .		4
110	Design of permanent magnets to avoid chaos in PM synchronous machines. , 0, , .		1
111	A short cylinder ultrasonic motor with novel excitation mode. , 0, , .		3
112	Micro-stepping control of ultrasonic stepping motors. , 0, , .		1
113	Application of chaotic-motion motors to industrial mixing processes. , 0, , .		14
114	Scalar control of a new phase-decoupling permanent magnet synchronous motor for servo application. , 0, , .		1
115	Destabilization control of a chaotic motor for industrial mixers. , 0, , .		1