
Rajiv R Mohan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3284882/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of a novel combination of TRAM-34 and ascorbic acid for the treatment of corneal fibrosis in vivo. PLoS ONE, 2022, 17, e0262046.	2.5	7
2	Autophagy in Extracellular Matrix and Wound Healing Modulation in the Cornea. Biomedicines, 2022, 10, 339.	3.2	15
3	Decorin regulates collagen fibrillogenesis during corneal wound healing in mouse in vivo. Experimental Eye Research, 2022, 216, 108933.	2.6	11
4	Quantitative Proteomics Reveals Molecular Network Driving Stromal Cell Differentiation: Implications for Corneal Wound Healing. International Journal of Molecular Sciences, 2022, 23, 2572.	4.1	0
5	Effects of Regular/Dilute Proparacaine Anesthetic Eye Drops in Combination with Ophthalmic Antibiotics on Corneal Wound Healing. Journal of Ocular Pharmacology and Therapeutics, 2022, 38, 232-239.	1.4	3
6	Evaluation of CRISPR/Cas9 mediated TGIF gene editing to inhibit corneal fibrosis in vitro. Experimental Eye Research, 2022, 220, 109113.	2.6	4
7	Corneal stromal repair and regeneration. Progress in Retinal and Eye Research, 2022, 91, 101090.	15.5	49
8	Corneal fibrosis abrogation by a localized AAV-mediated inhibitor of differentiation 3 (Id3) gene therapy in rabbit eyes inÂvivo. Molecular Therapy, 2022, 30, 3257-3269.	8.2	6
9	Novel insights into gene therapy in the cornea. Experimental Eye Research, 2021, 202, 108361.	2.6	22
10	Corneal stromal wound healing: Major regulators and therapeutic targets. Ocular Surface, 2021, 19, 290-306.	4.4	68
11	Safety and efficacy of combination of suberoylamilide hydroxyamic acid and mitomycin C in reducing pro-fibrotic changes in human corneal epithelial cells. Scientific Reports, 2021, 11, 4392.	3.3	3
12	Glutathione is a potential therapeutic target for acrolein toxicity in the cornea. Toxicology Letters, 2021, 340, 33-42.	0.8	10
13	The functional role of decorin in corneal neovascularization in vivo. Experimental Eye Research, 2021, 207, 108610.	2.6	14
14	Ocular toxicity of mustard gas: A concise review. Toxicology Letters, 2021, 343, 21-27.	0.8	24
15	Altered ocular surface immune cell profile in patients with dry eye disease. Ocular Surface, 2021, 21, 96-106.	4.4	21
16	Corticosteroids in the Management of Infectious Keratitis: A Concise Review. Journal of Ocular Pharmacology and Therapeutics, 2021, 37, 452-463.	1.4	5
17	Long-Term Safety and Tolerability of BMP7 and HGF Gene Overexpression in Rabbit Cornea. Translational Vision Science and Technology, 2021, 10, 6.	2.2	7
18	Six-Month In Vivo Safety Profiling of Topical Ocular AAV5–Decorin Gene Transfer. Translational Vision Science and Technology, 2021, 10, 5.	2.2	10

#	Article	IF	CITATIONS
19	Ocular manifestations of RT-PCR-confirmed COVID-19 cases in a large database cross-sectional study. BMJ Open Ophthalmology, 2021, 6, e000775.	1.6	6
20	Keratoconus patients exhibit a distinct ocular surface immune cell and inflammatory profile. Scientific Reports, 2021, 11, 20891.	3.3	17
21	Collagen matrix perturbations in corneal stroma of Ossabaw mini pigs with type 2 diabetes Molecular Vision, 2021, 27, 666-678.	1.1	2
22	A Novel Topical Ophthalmic Formulation to Mitigate Acute Mustard Gas Keratopathy In Vivo: A Pilot Study. Translational Vision Science and Technology, 2020, 9, 6.	2.2	16
23	A rabbit model for evaluating ocular damage from acrolein toxicityin vivo. Annals of the New York Academy of Sciences, 2020, 1480, 233-245.	3.8	10
24	The Need for Improved Therapeutic Approaches to Protect the Cornea Against Chemotoxic Injuries. Translational Vision Science and Technology, 2020, 9, 2.	2.2	5
25	Characterization of hydrogen sulfide toxicity to human corneal stromal fibroblasts. Annals of the New York Academy of Sciences, 2020, 1480, 207-218.	3.8	11
26	NOD-like Receptors in the Eye: Uncovering Its Role in Diabetic Retinopathy. International Journal of Molecular Sciences, 2020, 21, 899.	4.1	37
27	Role of in cellular differentiation of human corneal stromal fibroblasts. Molecular Vision, 2020, 26, 742-756.	1.1	4
28	Autophagy in corneal health and disease: A concise review. Ocular Surface, 2019, 17, 186-197.	4.4	31
29	Linear Polyethylenimine-DNA Nanoconstruct for Corneal Gene Delivery. Journal of Ocular Pharmacology and Therapeutics, 2019, 35, 23-31.	1.4	20
30	Is sex a biological variable in corneal wound healing?. Experimental Eye Research, 2019, 187, 107705.	2.6	17
31	Characterization of a functionally active primary microglial cell culture from the pig retina. Experimental Eye Research, 2019, 185, 107670.	2.6	10
32	Correlation between systemic S100A8 and S100A9 levels and severity of diabetic retinopathy in patients with type 2 diabetes mellitus. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 2019, 13, 1581-1589.	3.6	24
33	Assessment of corneal substrate biomechanics and its effect on epithelial stem cell maintenance and differentiation. Nature Communications, 2019, 10, 1496.	12.8	93
34	Identification of novel predictive factors for post surgical corneal haze. Scientific Reports, 2019, 9, 16980.	3.3	15
35	Decorin antagonizes corneal fibroblast migration via caveolae-mediated endocytosis of epidermal growth factor receptor. Experimental Eye Research, 2019, 180, 200-207.	2.6	21
36	The NLRP3 Inflammasome May Contribute to Pathologic Neovascularization in the Advanced Stages of Diabetic Retinopathy. Scientific Reports, 2018, 8, 2847.	3.3	105

#	Article	IF	CITATIONS
37	Altering equine corneal fibroblast differentiation through Smad gene transfer. Veterinary Ophthalmology, 2018, 21, 132-139.	1.0	8
38	Blockade of KCa3.1: A novel target to treat TGF-β1 induced conjunctival fibrosis. Experimental Eye Research, 2018, 167, 140-144.	2.6	14
39	Retinal Ultrastructural and Microvascular Defects in Decorin Deficient (Dcn â^'/â^') Mice. Microscopy and Microanalysis, 2018, 24, 1264-1265.	0.4	2
40	Young Ossabaw Pigs Fed a Western Diet Exhibit Early Signs of Diabetic Retinopathy. , 2018, 59, 2325.		16
41	Novel Combination <i>BMP7</i> and <i>HGF</i> Gene Therapy Instigates Selective Myofibroblast Apoptosis and Reduces Corneal Haze In Vivo. , 2018, 59, 1045.		54
42	KCa3.1 ion channel: A novel therapeutic target for corneal fibrosis. PLoS ONE, 2018, 13, e0192145.	2.5	29
43	Effects of topical hyaluronic acid on corneal wound healing in dogs: a pilot study. Veterinary Ophthalmology, 2017, 20, 123-130.	1.0	18
44	Development of a novel <i>ex vivo</i> equine corneal model. Veterinary Ophthalmology, 2017, 20, 288-293.	1.0	7
45	Targeted AAV5-Smad7 gene therapy inhibits corneal scarring in vivo. PLoS ONE, 2017, 12, e0172928.	2.5	59
46	Efficacy and Safety Comparison Between Suberoylanilide Hydroxamic Acid and Mitomycin C in Reducing the Risk of Corneal Haze After PRK Treatment In Vivo. Journal of Refractive Surgery, 2017, 33, 834-839.	2.3	13
47	Differential Molecular Expression of Extracellular Matrix and Inflammatory Genes at the Corneal Cone Apex Drives Focal Weakening in Keratoconus. , 2016, 57, 5372.		77
48	Epigenetic Modification Prevents Excessive Wound Healing and Scar Formation After Glaucoma Filtration Surgery. , 2016, 57, 3381.		36
49	Molecular mechanisms of suberoylanilide hydroxamic acid in the inhibition of <scp>TGF</scp> â€Î²1â€mediated canine corneal fibrosis. Veterinary Ophthalmology, 2016, 19, 480-487.	1.0	14
50	ITF2357 transactivates Id3 and regulate TGFβ/BMP7 signaling pathways to attenuate corneal fibrosis. Scientific Reports, 2016, 6, 20841.	3.3	34
51	Characterization of Inhibitor of differentiation (Id) proteins in human cornea. Experimental Eye Research, 2016, 146, 145-153.	2.6	13
52	Development of a novel inÂvivo corneal fibrosis model in the dog. Experimental Eye Research, 2016, 143, 75-88.	2.6	30
53	Gene editing for corneal disease management. World Journal of Translational Medicine, 2016, 5, 1.	3.5	5
54	Nanomedicine Approaches for Corneal Diseases. Journal of Functional Biomaterials, 2015, 6, 277-298.	4.4	78

#	Article	IF	CITATIONS
55	Therapeutic potential of <scp>P</scp> irfenidone for treating equine corneal scarring. Veterinary Ophthalmology, 2015, 18, 242-250.	1.0	17
56	Attenuation of lysyl oxidase and collagen gene expression in keratoconus patient corneal epithelium corresponds to disease severity. Molecular Vision, 2015, 21, 12-25.	1.1	53
57	Role of 5'TG3'-interacting factors (TGIFs) in Vorinostat (HDAC inhibitor)-mediated Corneal Fibrosis Inhibition. Molecular Vision, 2015, 21, 974-84.	1.1	22
58	Nanotechnology and adeno-associated virus-based decorin gene therapy ameliorates peritoneal fibrosis. American Journal of Physiology - Renal Physiology, 2014, 307, F777-F782.	2.7	24
59	Suberoylanilide hydroxamic acid (vorinostat): its role on equine corneal fibrosis and matrix metalloproteinase activity. Veterinary Ophthalmology, 2014, 17, 61-68.	1.0	21
60	Decorinâ€ <scp>PEI</scp> nanoconstruct attenuates equine corneal fibroblast differentiation. Veterinary Ophthalmology, 2014, 17, 162-169.	1.0	21
61	Corneal Gene Therapy: Basic Science and Translational Perspective. Ocular Surface, 2013, 11, 150-164.	4.4	48
62	BMP7 Gene Transfer via Gold Nanoparticles into Stroma Inhibits Corneal Fibrosis In Vivo. PLoS ONE, 2013, 8, e66434.	2.5	94
63	Transient pressure mediated intranuclear delivery of FITC-Dextran into chicken cardiomyocytes by MEMS-based nanothermite reaction actuator. Sensors and Actuators B: Chemical, 2012, 171-172, 1292-1296.	7.8	40
64	Gene therapy in the Cornea: 2005–present. Progress in Retinal and Eye Research, 2012, 31, 43-64.	15.5	67
65	Canine corneal fibroblast and myofibroblast transduction with AAV5. Veterinary Ophthalmology, 2012, 15, 291-298.	1.0	6
66	Efficacy and safety of suberoylanilide hydroxamic acid (Vorinostat) in the treatment of canine corneal fibrosis. Veterinary Ophthalmology, 2012, 15, 307-314.	1.0	11
67	Vorinostat: A Potent Agent to Prevent and Treat Laser-induced Corneal Haze. Journal of Refractive Surgery, 2012, 28, 285-290.	2.3	34
68	Attenuation of corneal myofibroblast development through nanoparticle-mediated soluble transforming growth factor-β type II receptor (sTGFβRII) gene transfer. Molecular Vision, 2012, 18, 2598-607.	1.1	23
69	Efficacious and Safe Tissue-Selective Controlled Gene Therapy Approaches for the Cornea. PLoS ONE, 2011, 6, e18771.	2.5	21
70	Significant Inhibition of Corneal Scarring In Vivo with Tissue-Selective, Targeted AAV5 Decorin Gene Therapy. , 2011, 52, 4833.		77
71	Mitomycin C: a promising agent for the treatment of canine corneal scarring. Veterinary Ophthalmology, 2011, 14, 304-312.	1.0	18
72	Polyethylenimine-conjugated gold nanoparticles: Gene transfer potential and low toxicity in the cornea. Nanomedicine: Nanotechnology, Biology, and Medicine, 2011, 7, 505-513.	3.3	103

#	Article	IF	CITATIONS
73	Targeted Decorin Gene Therapy Delivered with Adeno-Associated Virus Effectively Retards Corneal Neovascularization In Vivo. PLoS ONE, 2011, 6, e26432.	2.5	87
74	Isolation and cultivation of equine corneal keratocytes, fibroblasts and myofibroblasts. Veterinary Ophthalmology, 2010, 13, 37-42.	1.0	26
75	Efficacy and safety of mitomycin C as an agent to treat corneal scarring in horses using an in vitro model. Veterinary Ophthalmology, 2010, 13, 211-218.	1.0	24
76	Gene delivery in the equine cornea: a novel therapeutic strategy. Veterinary Ophthalmology, 2010, 13, 301-306.	1.0	17
77	Gene Therapy for the Cornea, Conjunctiva, and Lacrimal Gland. , 2010, , 185-194.		3
78	Transduction efficiency of AAV 2/6, 2/8 and 2/9 vectors for delivering genes in human corneal fibroblasts. Brain Research Bulletin, 2010, 81, 273-278.	3.0	38
79	Decorin transfection suppresses profibrogenic genes and myofibroblast formation in human corneal fibroblasts. Experimental Eye Research, 2010, 91, 238-245.	2.6	84
80	AAV serotype influences gene transfer in corneal stroma in vivo. Experimental Eye Research, 2010, 91, 440-448.	2.6	48
81	Applications of aptamers in nanodelivery systems in cancer, eye and inflammatory diseases. Nanomedicine, 2010, 5, 1435-1445.	3.3	38
82	Role of Transforming Growth Factor Beta in Corneal Function, Biology and Pathology. Current Molecular Medicine, 2010, 10, 565-578.	1.3	178
83	Localization of angiotensin converting enzyme in rabbit cornea and its role in controlling corneal angiogenesis in vivo. Molecular Vision, 2010, 16, 720-8.	1.1	23
84	Vector delivery technique affects gene transfer in the cornea in vivo. Molecular Vision, 2010, 16, 2494-501.	1.1	16
85	Therapeutic potential of trichostatin A to control inflammatory and fibrogenic disorders of the ocular surface. Molecular Vision, 2010, 16, 2964-73.	1.1	26
86	Trichostatin A Inhibits Corneal Haze In Vitro and In Vivo. , 2009, 50, 2695.		74
87	A novel method for generating corneal haze in anterior stroma of the mouse eye with the excimer laser. Experimental Eye Research, 2008, 86, 235-240.	2.6	53
88	Topical interleukin-1 receptor antagonist inhibits inflammatory cell infiltration into the cornea. Experimental Eye Research, 2008, 86, 753-757.	2.6	48
89	PDGF-driven proliferation, migration, and IL8 chemokine secretion in human corneal fibroblasts involve JAK2-STAT3 signaling pathway. Molecular Vision, 2008, 14, 1020-7.	1.1	44
90	Femtosecond Laser and Microkeratome Corneal Flaps: Comparison of Stromal Wound Healing and Inflammation. Journal of Refractive Surgery, 2007, 23, 667-676.	2.3	143

#	Article	IF	CITATIONS
91	Femtosecond laser and microkeratome corneal flaps: comparison of stromal wound healing and inflammation. Journal of Refractive Surgery, 2007, 23, 667-76.	2.3	54
92	Stromal haze, myofibroblasts, and surface irregularity after PRK. Experimental Eye Research, 2006, 82, 788-797.	2.6	245
93	Effect of Prophylactic and Therapeutic Mitomycin C on Corneal Apoptosis, Cellular Proliferation, Haze, and Long-term Keratocyte Density in Rabbits. Journal of Refractive Surgery, 2006, 22, 562-574.	2.3	167
94	Effect of prophylactic and therapeutic mitomycin C on corneal apoptosis, cellular proliferation, haze, and long-term keratocyte density in rabbits. Journal of Refractive Surgery, 2006, 22, 562-74.	2.3	59
95	Wound Healing in the Cornea. Cornea, 2005, 24, 509-522.	1.7	378
96	Gene therapy in the cornea. Progress in Retinal and Eye Research, 2005, 24, 537-559.	15.5	87
97	RANK, RANKL, OPG, and M-CSF Expression in Stromal Cells during Corneal Wound Healing. , 2004, 45, 2201.		55
98	Gene transfer into rabbit keratocytes using AAV and lipid-mediated plasmid DNA vectors with a lamellar flap for stromal access. Experimental Eye Research, 2003, 76, 373-383.	2.6	52
99	Effect of ectopic epithelial tissue within the stroma on keratocyte apoptosis, mitosis, and myofibroblast transformation. Experimental Eye Research, 2003, 76, 193-201.	2.6	36
100	Development of genetically engineered tet HPV16-E6/E7 transduced human corneal epithelial clones having tight regulation of proliferation and normal differentiation. Experimental Eye Research, 2003, 77, 395-407.	2.6	39
101	Apoptosis, necrosis, proliferation, and myofibroblast generation in the stroma following LASIK and PRK. Experimental Eye Research, 2003, 76, 71-87.	2.6	374
102	Apoptosis in the Cornea in Response to Epithelial Injury: Significance to Wound Healing and Dry Eye. Advances in Experimental Medicine and Biology, 2002, 506, 821-826.	1.6	21
103	The Corneal Wound Healing Response:. Progress in Retinal and Eye Research, 2001, 20, 625-637.	15.5	529
104	Stromal-epithelial interactions in the cornea. Progress in Retinal and Eye Research, 1999, 18, 293-309.	15.5	314
105	Expression of HGF, KGF, EGF and Receptor Messenger RNAs Following Corneal Epithelial Wounding. Experimental Eye Research, 1999, 68, 377-397.	2.6	168
106	Apoptosis in the Cornea: Further Characterization of Fas/Fas Ligand System. Experimental Eye Research, 1997, 65, 575-589.	2.6	129