Jinghui Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3284825/publications.pdf Version: 2024-02-01

Іменш 7ноц

#	Article	IF	CITATIONS
1	Synergistic effect of graphene nanosheets and carbonyl iron–nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites. Journal of Materials Chemistry C, 2018, 6, 1476-1486.	2.7	212
2	Novel lignin–chitosan–PVA composite hydrogel for wound dressing. Materials Science and Engineering C, 2019, 104, 110002.	3.8	201
3	Novel Lignin-Cellulose-Based Carbon Nanofibers as High-Performance Supercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 1210-1221.	4.0	108
4	Photocatalytic conversion of biomass-based monosaccharides to lactic acid by ultrathin porous oxygen doped carbon nitride. Applied Catalysis B: Environmental, 2021, 283, 119520.	10.8	108
5	Biomimetic lignin/poly(ionic liquids) composite hydrogel dressing with excellent mechanical strength, self-healing properties, and reusability. Chemical Engineering Journal, 2020, 400, 125984.	6.6	98
6	Renewable lignin-based carbon nanofiber as Ni catalyst support for depolymerization of lignin to phenols in supercritical ethanol/water. Renewable Energy, 2020, 147, 1331-1339.	4.3	86
7	Electrospun Lignin-Based Carbon Nanofibers as Supercapacitor Electrodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 12831-12841.	3.2	86
8	Functional food packaging for reducing residual liquid food: Thermo-resistant edible super-hydrophobic coating from coffee and beeswax. Journal of Colloid and Interface Science, 2019, 533, 742-749.	5.0	84
9	Epoxy/POSS organic–inorganic hybrids: Viscoelastic, mechanical properties and micromorphologies. Polymer Composites, 2007, 28, 175-179.	2.3	75
10	Facile synthesis of trimethylammonium grafted cellulose foams with high capacity for selective adsorption of anionic dyes from water. Carbohydrate Polymers, 2020, 241, 116369.	5.1	74
11	Stiff micelle-crosslinked hyaluronate hydrogels with low swelling for potential cartilage repair. Journal of Materials Chemistry B, 2019, 7, 5490-5501.	2.9	69
12	Structural changes of poplar wood lignin after supercritical pretreatment using carbon dioxide and ethanol–water as co-solvents. RSC Advances, 2017, 7, 8314-8322.	1.7	67
13	Enhanced adsorption activity for phosphate removal by functional lignin-derived carbon-based adsorbent: Optimization, performance and evaluation. Science of the Total Environment, 2021, 761, 143217.	3.9	66
14	Structural transformations of triploid of Populus tomentosa Carr. lignin during auto-catalyzed ethanol organosolv pretreatment. Industrial Crops and Products, 2015, 76, 522-529.	2.5	65
15	Novel porous oil-water separation material with super-hydrophobicity and super-oleophilicity prepared from beeswax, lignin, and cotton. Science of the Total Environment, 2020, 706, 135807.	3.9	63
16	Lignin/Polyacrylonitrile Carbon Fibers: The Effect of Fractionation and Purification on Properties of Derived Carbon Fibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 8554-8562.	3.2	58
17	Electrospun biomass based carbon nanofibers as high-performance supercapacitors. Industrial Crops and Products, 2020, 148, 112181.	2.5	58
18	High-strength lignin-based carbon fibers <i>via</i> a low-energy method. RSC Advances, 2018, 8, 1218-1224.	1.7	57

#	Article	IF	CITATIONS
19	Recent advances and challenges on removal and recycling of phosphate from wastewater using biomass-derived adsorbents. Chemosphere, 2021, 278, 130377.	4.2	56
20	Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan I in an acidic environment. Journal of Materials Chemistry B, 2020, 8, 10788-10796.	2.9	55
21	Copper oxide functionalized chitosan hybrid hydrogels for highly efficient photocatalytic-reforming of biomass-based monosaccharides to lactic acid. Applied Catalysis B: Environmental, 2021, 291, 120123.	10.8	55
22	Three-dimensional macroporous hybrid carbon aerogel with heterogeneous structure derived from MXene/cellulose aerogel for absorption-dominant electromagnetic interference shielding and excellent thermal insulation performance. Journal of Colloid and Interface Science, 2022, 619, 96-105.	5.0	52
23	Removed heavy metal ions from wastewater reuse for chemiluminescence: Successive application of lignin-based composite hydrogels. Journal of Hazardous Materials, 2022, 421, 126722.	6.5	51
24	Effect of lignin structure in different biomass resources on the performance of lignin-based carbon nanofibers as supercapacitor electrode. Industrial Crops and Products, 2021, 170, 113745.	2.5	50
25	Reasonable regulation of carbon/nitride ratio in carbon nitride for efficient photocatalytic reforming of biomass-derived feedstocks to lactic acid. Applied Catalysis B: Environmental, 2021, 299, 120698.	10.8	47
26	Preparation of carbon dots from waste cellulose diacetate as a sensor for tetracycline detection and fluorescence ink. International Journal of Biological Macromolecules, 2020, 164, 4289-4298.	3.6	45
27	Ultra-low gas permeable cellulose nanoï¬ber nanocomposite ï¬lms ï¬lled with highly oriented graphene oxide nanosheets induced by shear field. Carbohydrate Polymers, 2019, 209, 310-319.	5.1	43
28	Epoxy-modified cyanate ester resin and its high-modulus carbon-fiber composites. Polymer Composites, 2006, 27, 402-409.	2.3	42
29	Preparation and characterization of thermo-sensitive gel with phenolated alkali lignin. Scientific Reports, 2018, 8, 14450.	1.6	42
30	Impact of lignin extraction methods on microstructure and mechanical properties of ligninâ€based carbon fibers. Journal of Applied Polymer Science, 2018, 135, 45580.	1.3	40
31	Biomass-based flexible nanoscale carbon fibers: effects of chemical structure on energy storage properties. Journal of Materials Chemistry A, 2021, 9, 10120-10134.	5.2	39
32	Effect of particle size of HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to phenols. Journal of Analytical and Applied Pyrolysis, 2018, 129, 13-20.	2.6	38
33	Sulfonic-acid-functionalized carbon fiber from waste newspaper as a recyclable carbon based solid acid catalyst for the hydrolysis of cellulose. RSC Advances, 2019, 9, 28902-28907.	1.7	38
34	Magnetic coupling N self-doped porous carbon derived from biomass with broad absorption bandwidth and high-efficiency microwave absorption. Journal of Colloid and Interface Science, 2022, 610, 1077-1087.	5.0	38
35	Biomimetic Biomass-Bsed Carbon Fibers: Effect of Covalent-Bnd Connection on Performance of Derived Carbon Fibers. ACS Sustainable Chemistry and Engineering, 2019, 7, 16084-16093.	3.2	36
36	Phosphorus-doped carbon nitride with grafted sulfonic acid groups for efficient photocatalytic synthesis of xylonic acid. Green Chemistry, 2021, 23, 4150-4160.	4.6	36

#	Article	IF	CITATIONS
37	Flower-like NiMn-layered double hydroxide microspheres coated on biomass-derived 3D honeycomb porous carbon for high-energy hybrid supercapacitors. Industrial Crops and Products, 2021, 166, 113472.	2.5	36
38	A novel cellulose acetate/poly (ionic liquid) composite air filter. Cellulose, 2020, 27, 3889-3902.	2.4	35
39	Recent Advances and Challenges in Photoreforming of Biomassâ€Derived Feedstocks into Hydrogen, Biofuels, or Chemicals by Using Functional Carbon Nitride Photocatalysts. ChemSusChem, 2021, 14, 4903-4922.	3.6	35
40	Curing behavior of epoxy/POSS/DDS hybrid systems. Polymer Composites, 2008, 29, 77-83.	2.3	33
41	Flexible and Anisotropic Strain Sensors with the Asymmetrical Cross-Conducting Network for Versatile Bio-Mechanical Signal Recognition. ACS Applied Materials & Interfaces, 2021, 13, 44925-44934.	4.0	33
42	Catalytic conversion of lignin to bio-oil over PTA/MCM-41 catalyst assisted by ultrasound acoustic cavitation. Fuel Processing Technology, 2020, 206, 106479.	3.7	32
43	Preparation, characterization and the adsorption characteristics of lignin/silica nanocomposites from cellulosic ethanol residue. RSC Advances, 2017, 7, 41176-41181.	1.7	31
44	Biomimetic epidermal sensors assembled from polydopamine-modified reduced graphene oxide/polyvinyl alcohol hydrogels for the real-time monitoring of human motions. Journal of Materials Chemistry B, 2020, 8, 10549-10558.	2.9	31
45	Fabricating lignin-based carbon nanofibers as versatile supercapacitors from food wastes. International Journal of Biological Macromolecules, 2022, 194, 632-643.	3.6	29
46	Nitrogen-doped lignin-derived biochar with enriched loading of CeO2 nanoparticles for highly efficient and rapid phosphate capture. International Journal of Biological Macromolecules, 2021, 182, 1484-1494.	3.6	28
47	Synergetic enhancement of thermal conductivity by constructing BN and AlN hybrid network in epoxy matrix. Journal of Polymer Research, 2020, 27, 1.	1.2	27
48	Thermodegradation kinetics of epoxy/DDS/POSS system. Polymer Composites, 2007, 28, 755-761.	2.3	26
49	Self-assembly of cationic amphiphilic cellulose-g-poly (p-dioxanone) copolymers. Carbohydrate Polymers, 2019, 204, 214-222.	5.1	26
50	Unlocking the response of lignin structure by depolymerization process improved lignin-based carbon nanofibers preparation and mechanical strength. International Journal of Biological Macromolecules, 2020, 156, 669-680.	3.6	26
51	Highly efficient and stable catalysis of p-nitrophenol via silver/lignin/polyacrylic acid hydrogel. International Journal of Biological Macromolecules, 2020, 144, 947-953.	3.6	25
52	Lignin Structure and Solvent Effects on the Selective Removal of Condensed Units and Enrichment of S-Type Lignin. Polymers, 2018, 10, 967.	2.0	24
53	Flexible and Conductive Cellulose Composite Paper for Highly Efficient Electromagnetic Interference Shielding. Advanced Electronic Materials, 2021, 7, 2100496.	2.6	24
54	Hybrid effect on mechanical properties of M40â€₹300 carbon fiber reinforced Bisphenol A Dicyanate ester composites. Polymer Composites, 2010, 31, 2129-2137.	2.3	23

#	Article	IF	CITATIONS
55	A Phosphotungstic Acid Catalyst for Depolymerization in Bulrush Lignin. Catalysts, 2019, 9, 399.	1.6	23
56	Effective fractionation strategy of sugarcane bagasse lignin to fabricate quality lignin-based carbon nanofibers supercapacitors. International Journal of Biological Macromolecules, 2021, 184, 604-617.	3.6	23
57	Boosting photocatalytic performance for selective oxidation of biomass-derived pentoses and hexoses to lactic acid using hierarchically porous Cu/Cu ₂ O/CuO@CA. Journal of Materials Chemistry C, 2021, 9, 16450-16458.	2.7	22
58	Development of the synthesis and applications of xylonic acid: A mini-review. Fuel, 2022, 314, 122773.	3.4	22
59	Ultrasound acoustic cavitation enhances depolymerization of organosolv lignin to phenolic monomers and low molecular weight lignin bio-oils. Fuel Processing Technology, 2020, 203, 106387.	3.7	21
60	Tuning structure of spent coffee ground lignin by temperature fractionation to improve lignin-based carbon nanofibers mechanical performance. International Journal of Biological Macromolecules, 2021, 174, 254-262.	3.6	21
61	The Synthesis of h-BN-Modified Z-Scheme WO ₃ /g-C ₃ N ₄ Heterojunctions for Enhancing Visible Light Photocatalytic Degradation of Tetracycline Pollutants. ACS Omega, 2022, 7, 6035-6045.	1.6	21
62	A Comparison of Phenolic Monomers Produced from Different Types of Lignin by Phosphotungstic Acid Catalysts. ChemistryOpen, 2019, 8, 643-649.	0.9	20
63	Lignin bio-oil-based electrospun nanofibers with high substitution ratio property for potential carbon nanofibers applications. Polymer Testing, 2020, 89, 106591.	2.3	20
64	Synthesis of TiO2@lignin based carbon nanofibers composite materials with highly efficient photocatalytic to methylene blue dye. Journal of Polymer Research, 2020, 27, 1.	1.2	20
65	Fabrication of uniform lignin nanoparticles with tunable size for potential wound healing application. International Journal of Biological Macromolecules, 2022, 214, 170-180.	3.6	20
66	Influence of epoxy sizing of carbon-fiber on the properties of carbon fiber/cyanate ester composites. Polymer Composites, 2006, 27, 591-598.	2.3	19
67	Single cell migration dynamics mediated by geometric confinement. Colloids and Surfaces B: Biointerfaces, 2016, 145, 72-78.	2.5	18
68	Characterization of lignin extracted from Acanthopanax senticosus residue using different methods on UV-resistant behavior. International Journal of Biological Macromolecules, 2021, 192, 498-505.	3.6	18
69	Stepwise fractionation extracted lignin for high strength lignin-based carbon fibers. New Journal of Chemistry, 2019, 43, 18868-18875.	1.4	17
70	Biodegradation of Lignin into Low-Molecular-Weight Oligomers by Multicopper Laccase-Mimicking Nanozymes of the Cu/GMP Complex at Room Temperature. ACS Sustainable Chemistry and Engineering, 2022, 10, 5489-5499.	3.2	16
71	From lignin-derived bio-oil to lignin-g-polyacrylonitrile nanofiber: High lignin substitution ratio and maintaining good nanofiber morphology. Polymer Testing, 2020, 81, 106207.	2.3	15
72	Efficient and controllable ultrasound-assisted depolymerization of organosolv lignin catalyzed to liquid fuels by MCM-41 supported phosphotungstic acid. RSC Advances, 2020, 10, 31479-31494.	1.7	15

#	Article	IF	CITATIONS
73	Multifunction lignin-based carbon nanofibers with enhanced electromagnetic wave absorption and surpercapacitive energy storage capabilities. International Journal of Biological Macromolecules, 2022, 199, 201-211.	3.6	15
74	Self-assembly and paclitaxel loading capacity of α-tocopherol succinate-conjugated hydroxyethyl cellulose nanomicelle. Colloid and Polymer Science, 2016, 294, 135-143.	1.0	14
75	Preparation, characterization and formation mechanism of size-controlled lignin nanoparticles. International Journal of Biological Macromolecules, 2022, 217, 312-320.	3.6	14
76	Lignin-based electrospinning nanofibers for reversible iodine capture and potential applications. International Journal of Biological Macromolecules, 2022, 208, 782-793.	3.6	13
77	High-efficiency capture and removal of phosphate from wastewater by 3D hierarchical functional biomass-derived carbon aerogel. Science of the Total Environment, 2022, 827, 154343.	3.9	13
78	N–O Codoped Carbon Nanofibers Decorated with Graphene for Highâ€Performance Supercapacitors. Energy Technology, 2021, 9, 2100743.	1.8	12
79	Biomass-based flexible fire warning sensor with excellent flame retardancy and sensitivity. Chemical Engineering Journal, 2022, 437, 135412.	6.6	12
80	Novel Nonprecious Metal Loading Multi-Metal Oxide Catalysts for Lignin Depolymerization. Energy & Fuels, 2019, 33, 6491-6500.	2.5	11
81	Ni–Mg–Al Catalysts Effectively Promote Depolymerization of Rice Husk Lignin to Bio-Oil. Catalysis Letters, 2020, 150, 1591-1604.	1.4	11
82	Facile adjusting the concentration of siliceous seed to obtain different HZSM-5 zeolite catalysts for effective catalytic depolymerization reaction of lignin. Biomass Conversion and Biorefinery, 2023, 13, 2017-2028.	2.9	8
83	Layer-by-Layer Assembly of Graphene Oxide and Polyethylenimine on Carbon Nanofiber Films for Supercapacitor Applications. ACS Applied Nano Materials, 2022, 5, 455-463.	2.4	7
84	Fabrication of porous ultrathin carbon nitride nanosheet catalysts with enhanced photocatalytic activity for N- and O-heterocyclic compound synthesis. New Journal of Chemistry, 2021, 45, 365-372.	1.4	6
85	Effect of hierarchical HZSM-5 zeolite on the catalytic depolymerization of organosolv lignin to renewable phenols. Journal of Porous Materials, 2022, 29, 445-457.	1.3	6
86	Reinforced macromolecular micelle-crosslinked hyaluronate gels induced by water/DMSO binary solvent. Soft Matter, 2020, 16, 8647-8654.	1.2	5
87	Advances in the application of molecular sieves as catalysts for lignin depolymerization ― <scp>HZSM</scp> â€5 as an example. Environmental Progress and Sustainable Energy, 0, , .	1.3	4
88	Glass bead-catalyzed depolymerization of poplar wood lignin into low-molecular-weight products. New Journal of Chemistry, 2019, 43, 9280-9288.	1.4	3
89	Exploration of mechanisms of lignin extraction by different methods. Environmental Progress and Sustainable Energy, 0, , e13785.	1.3	3
90	Base-catalyzed depolymerization of lignin into phenols: methoxy groups' secondary reactions triggered phenol regulation and repolymerization. Biomass Conversion and Biorefinery, 0, , 1.	2.9	3

#	Article	IF	CITATIONS
91	Lignin condensation inhibition and antioxidant activity improvement in a reductive ternary DES fractionation microenvironment by thiourea dioxide self-decomposition. New Journal of Chemistry, 2022, 46, 8892-8900.	1.4	3
92	Ni ₁₂ P ₅ /P–N–C Derived from Natural Single-Celled Chlorella for Catalytic Depolymerization of Lignin into Monophenols. ACS Omega, 2022, 7, 13134-13143.	1.6	3
93	Analysis of organic acids in the waste-liquor of aspen auto-catalyzed ethanol-water pulping. , 2011, , .		1
94	Nano-magnesium oxide as hard template synthesis of lignin carbonbased solid acids and its application for cellulose hydrolysis. Tappi Journal, 2019, 18, 67-71.	0.2	1
95	Influence of poplar green liquor pretreatment on pentosan extraction. , 2013, , .		0
96	Depolymerization of corn cobs using the CO2/lithium bromide trihydrate system for low molecular weight lignin with high antioxidant activity. Biomass Conversion and Biorefinery, 2024, 14, 7125-7137.	2.9	0