VerÃ³nica Quintero-HernÃ;ndez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3284618/publications.pdf

Version: 2024-02-01

VerÃ³nica

#	Article	IF	CITATIONS
1	Recombinant C-Terminal Domains from Scorpine-like Peptides Inhibit the Plasmodium berghei Ookinete Development In Vitro. International Journal of Peptide Research and Therapeutics, 2021, 27, 817-829.	1.9	3
2	APORTES Y DIFICULTADES DE LA METAGENÓMICA DE SUELOS Y SU IMPACTO EN LA AGRICULTURA Acta Biologica Colombiana, 2021, 26, 449-461.	0.4	0
3	Emerging Applications of Bacteriocins as Antimicrobials, Anticancer Drugs, and Modulators of The Gastrointestinal Microbiota. Polish Journal of Microbiology, 2021, 70, 143-159.	1.7	18
4	Smp76, a Scorpine-Like Peptide Isolated from the Venom of the Scorpion Scorpio maurus palmatus, with a Potent Antiviral Activity Against Hepatitis C Virus and Dengue Virus. International Journal of Peptide Research and Therapeutics, 2020, 26, 811-821.	1.9	24
5	Influence of rehydration on transcriptome during resuscitation of desiccated Pseudomonas putida KT2440. Annals of Microbiology, 2020, 70, .	2.6	4
6	The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. Acta Biologica Colombiana, 2020, 25, 140-154.	0.4	32
7	Growth inhibition of pathogenic microorganisms by Pseudomonas protegens EMM-1 and partial characterization of inhibitory substances. PLoS ONE, 2020, 15, e0240545.	2.5	5
8	Desiccation-induced viable but nonculturable state in Pseudomonas putida KT2440, a survival strategy. PLoS ONE, 2019, 14, e0219554.	2.5	17
9	Structural characterization of scorpion peptides and their bactericidal activity against clinical isolates of multidrug-resistant bacteria. PLoS ONE, 2019, 14, e0222438.	2.5	19
10	Bacterial Mixtures, the Future Generation of Inoculants for Sustainable Crop Production. Sustainable Development and Biodiversity, 2019, , 11-44.	1.7	7
11	Identification of Klebsiella Variicola T29A Genes Involved In Tolerance To Desiccation. Open Microbiology Journal, 2019, 13, 256-267.	0.7	3
12	A paratransgenic strategy to block transmission of Xylella fastidiosa from the glassy-winged sharpshooter Homalodisca vitripennis. BMC Biotechnology, 2018, 18, 50.	3.3	21
13	Recombinant expression of Intrepicalcin from the scorpion Vaejovis intrepidus and its effect on skeletal ryanodine receptors. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 936-946.	2.4	12
14	Design and expression of recombinant toxins from Mexican scorpions of the genus Centruroides for production of antivenoms. Toxicon, 2017, 128, 5-14.	1.6	10
15	Targeting antigens to Dec-205 on dendritic cells induces a higher immune response in chickens: Hemagglutinin of avian influenza virus example. Research in Veterinary Science, 2017, 111, 55-62.	1.9	19
16	Next generation of microbial inoculants for agriculture and bioremediation. Microbial Biotechnology, 2017, 10, 19-21.	4.2	107
17	Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS ONE, 2017, 12, e0187913.	2.5	106
18	Comprehensive analysis of venom from the scorpion Centruroides tecomanus reveals compounds with antimicrobial, cytotoxic, and insecticidal activities. Toxicon, 2016, 118, 95-103.	1.6	17

VerÃ³nica

#	Article	IF	CITATIONS
19	Scorpion Venom Gland Transcriptomics and Proteomics: An Overview. , 2016, , 105-124.		4
20	Transcriptome Analysis of Scorpion Species Belonging to the Vaejovis Genus. PLoS ONE, 2015, 10, e0117188.	2.5	56
21	Whole Transcriptome of the Venom Gland from Urodacus yaschenkoi Scorpion. PLoS ONE, 2015, 10, e0127883.	2.5	56
22	Novel monoclonal antibody against alphaX subunit from horse CD11c/CD18 integrin. Veterinary Immunology and Immunopathology, 2015, 164, 220-226.	1.2	2
23	Structure, Molecular Modeling, and Function of the Novel Potassium Channel Blocker Urotoxin Isolated from the Venom of the Australian Scorpion <i>Urodacus yaschenkoi</i> . Molecular Pharmacology, 2014, 86, 28-41.	2.3	21
24	Characterization of the venom from the Australian scorpion Urodacus yaschenkoi: Molecular mass analysis of components, cDNA sequences and peptides with antimicrobial activity. Toxicon, 2013, 63, 44-54.	1.6	76
25	Scorpion venom components that affect ion-channels function. Toxicon, 2013, 76, 328-342.	1.6	222
26	Molecular cloning and biochemical characterization of the first Na+-channel α-type toxin peptide (Acra4) from Androctonus crassicauda scorpion venom. Biochimie, 2013, 95, 1216-1222.	2.6	20
27	Venom proteomic and venomous glands transcriptomic analysis of the Egyptian scorpion Scorpio maurus palmatus (Arachnida: Scorpionidae). Toxicon, 2013, 74, 193-207.	1.6	77
28	Mass Fingerprinting of the Venom and Transcriptome of Venom Gland of Scorpion Centruroides tecomanus. PLoS ONE, 2013, 8, e66486.	2.5	56
29	Gene cloning and functional characterization of four novel antimicrobial-like peptides from scorpions of the family Vaejovidae. Peptides, 2012, 34, 290-295.	2.4	56
30	Evaluation of three different formats of a neutralizing single chain human antibody against toxin Cn2: Neutralization capacity versus thermodynamic stability. Immunology Letters, 2012, 143, 152-160.	2.5	7
31	Identification and Phylogenetic Analysis of Tityus pachyurus and Tityus obscurus Novel Putative Na+-Channel Scorpion Toxins. PLoS ONE, 2012, 7, e30478.	2.5	70
32	Turkish scorpion Buthacus macrocentrus: General characterization of the venom and description of Bu1, a potent mammalian Na+-channel α-toxin. Toxicon, 2012, 59, 408-415.	1.6	26
33	Vejovine, a new antibiotic from the scorpion venom of Vaejovis mexicanus. Toxicon, 2011, 57, 84-92.	1.6	58
34	Recombinant expression of the toxic peptide ErgTx1 and role of Met35 on its stability and function. Peptides, 2011, 32, 560-567.	2.4	10
35	Scorpion and spider venom peptides: Gene cloning and peptide expression. Toxicon, 2011, 58, 644-663.	1.6	60
36	The change of the scFv into the Fab format improves the stability and in vivo toxin neutralization capacity of recombinant antibodies. Molecular Immunology, 2007, 44, 1307-1315.	2.2	70

VerÃ³nica

#	Article	IF	CITATIONS
37	Design and validation of a synthetic VH repertoire with tailored diversity for protein recognition. Journal of Molecular Recognition, 2006, 19, 413-422.	2.1	16
38	Directed Evolution, Phage Display and Combination of Evolved Mutants: A Strategy to Recover the Neutralization Properties of the scFv Version of BCF2 a Neutralizing Monoclonal Antibody Specific to Scorpion Toxin Cn2. Journal of Molecular Biology, 2005, 346, 1287-1297.	4.2	46
39	A site-specific recombinase (RinQ) is required to exert incompatibility towards the symbiotic plasmid of Rhizobium etli. Molecular Microbiology, 2002, 46, 1023-1032.	2.5	10