Haibo Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3284216/publications.pdf

Version: 2024-02-01

516215 525886 32 815 16 27 citations h-index g-index papers 32 32 32 1415 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues. Advanced Materials, 2018, 30, e1706913.	11.1	199
2	Hierarchical targeted hepatocyte mitochondrial multifunctional chitosan nanoparticles for anticancer drug delivery. Biomaterials, 2015, 52, 240-250.	5.7	84
3	Leonurine ameliorates kidney fibrosis via suppressing TGF-β and NF-κB signaling pathway in UUO mice. International Immunopharmacology, 2015, 25, 406-415.	1.7	46
4	Daphnetin ameliorates experimental colitis by modulating microbiota composition and T _{reg} /T _h 17 balance. FASEB Journal, 2019, 33, 9308-9322.	0.2	45
5	α-Hederin inhibits interleukin 6-induced epithelial-to-mesenchymal transition associated with disruption of JAK2/STAT3 signaling in colon cancer cells. Biomedicine and Pharmacotherapy, 2018, 101, 107-114.	2.5	44
6	Quaternized chitosan-stabilized copper sulfide nanoparticles for cancer therapy. Materials Science and Engineering C, 2019, 96, 129-137.	3.8	43
7	Lobetyolin induces apoptosis of colon cancer cells by inhibiting glutamine metabolism. Journal of Cellular and Molecular Medicine, 2020, 24, 3359-3369.	1.6	38
8	\hat{l}^2 -Elemene Synergizes With Gefitinib to Inhibit Stem-Like Phenotypes and Progression of Lung Cancer via Down-Regulating EZH2. Frontiers in Pharmacology, 2018, 9, 1413.	1.6	37
9	MicroRNAs that regulate PTEN as potential biomarkers in colorectal cancer: a systematic review. Journal of Cancer Research and Clinical Oncology, 2020, 146, 809-820.	1.2	24
10	Worenine reverses the Warburg effect and inhibits colon cancer cell growth by negatively regulating HIF-1α. Cellular and Molecular Biology Letters, 2021, 26, 19.	2.7	24
11	Demethylzeylasteral (T-96) inhibits triple-negative breast cancer invasion by blocking the canonical and non-canonical TGF- \hat{l}^2 signaling pathways. Naunyn-Schmiedeberg's Archives of Pharmacology, 2019, 392, 593-603.	1.4	20
12	LC-MS/MS analysis and evaluation of the anti-inflammatory activity of components from BushenHuoxue decoction. Pharmaceutical Biology, 2017, 55, 937-945.	1.3	19
13	Protective Effect of 2-Hydroxymethyl Anthraquinone from Hedyotis diffusa Willd in Lipopolysaccharide-Induced Acute Lung Injury Mediated by TLR4-NF-ήB Pathway. Inflammation, 2018, 41, 2136-2148.	1.7	19
14	Genetic progression in gastrointestinal stromal tumors: mechanisms and molecular interventions. Oncotarget, 2017, 8, 60589-60604.	0.8	19
15	Quality assessment of Fructus Ligustri Lucidi by the simultaneous determination of six compounds and chemometric analysis. Journal of Separation Science, 2015, 38, 1822-1827.	1.3	17
16	4′-hydroxywogonin inhibits colorectal cancer angiogenesis by disrupting PI3K/AKT signaling. Chemico-Biological Interactions, 2018, 296, 26-33.	1.7	17
17	Identification of the absorbed components and metabolites of Xiao-Ai-Jie-Du decoction and their distribution in rats using ultra high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2020, 179, 112984.	1.4	13
18	Purification and biochemical characterization of a novel fibrinolytic enzyme, PSLTro01, from a medicinal animal Porcellio scaber Latreille. International Journal of Biological Macromolecules, 2015, 80, 536-546.	3.6	12

#	ARTICLE ART	IF	CITATIONS
19	mathvariant="bold">α-Hederin Arrests Cell Cycle at G2/M Checkpoint and Promotes Mitochondrial Apoptosis by Blocking Nuclear Factor- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mrow><mml:mtext mathvariant="bold">ΰ</mml:mtext </mml:mrow>B Signaling in Colon Cancer Cells.</mml:math 	0.9	11
20	BioMed Research International, 2018, 2018, 1-11. HIPK3 Inhibition by Exosomal hsa-miR-101-3p Is Related to Metabolic Reprogramming in Colorectal Cancer. Frontiers in Oncology, 2021, 11, 758336.	1.3	11
21	Identification of Significant Modules and Targets of Xian-Lian-Jie-Du Decoction Based on the Analysis of Transcriptomics, Proteomics and Single-Cell Transcriptomics in Colorectal Tumor. Journal of Inflammation Research, 2022, Volume 15, 1483-1499.	1.6	10
22	Characterization of the chemical constituents and in vivo metabolic profile of ⟨i⟩Scutellaria barbata⟨i⟩ D. Don by ultra high performance liquid chromatography with highâ€resolution mass spectrometry. Journal of Separation Science, 2022, 45, 1600-1609.	1.3	10
23	Functionalized reduced graphene oxide with aptamer macroarray for cancer cell capture and fluorescence detection. Mikrochimica Acta, 2020, 187, 407.	2.5	9
24	ONTD induces growth arrest and apoptosis of human hepatoma Bel-7402 cells though a peroxisome proliferator-activated receptor \hat{l}^3 -dependent pathway. Toxicology in Vitro, 2017, 45, 44-53.	1.1	8
25	Traditional Chinese medicine as targeted treatment for epithelialâ€mesenchymal transitionâ€induced cancer progression. Journal of Cellular Biochemistry, 2019, 120, 1068-1079.	1.2	8
26	Cell affinity screening combined with nanoLC-MS/MS based peptidomics for identifying cancer cell binding peptides from Bufo Bufo gargarizans. Journal of Pharmaceutical and Biomedical Analysis, 2021, 206, 114354.	1.4	7
27	MK2 is a therapeutic target for high-risk multiple myeloma. Haematologica, 2021, 106, 1774-1777.	1.7	6
28	Analyzing liver protein-bound DMAV by using size exclusion and ion exchange HPLC combined with ICP-MS and MRM mode in rats exposed to AS4S4. Talanta, 2021, 234, 122714.	2.9	6
29	Compound Taxus chinensis Capsule Combined with Chemotherapy for Non-Small-Cell Lung Cancer: A PRISMA-Compliant Systematic Review and Meta-Analysis of Randomized Controlled Trials. Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-10.	0.5	4
30	Microfluidic Bioprinting: Digitally Tunable Microfluidic Bioprinting of Multilayered Cannular Tissues (Adv. Mater. 43/2018). Advanced Materials, 2018, 30, 1870322.	11.1	2
31	α-Hederin Inhibits the Proliferation of Hepatocellular Carcinoma Cells via Hippo-Yes-Associated Protein Signaling Pathway. Frontiers in Oncology, 2022, 12, 839603.	1.3	2
32	Effect of Aidi injection plus transarterial chemoembolization on primary hepatic carcinoma: a systematic review and Meta-analysis. Journal of Traditional Chinese Medicine, 2017, 37, 567-587.	0.1	1