Antonio Delgado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3283689/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids. Plant and Soil, 2002, 245, 277-286.	1.8	137
2	Phosphorus Forms and Desorption Patterns in Heavily Fertilized Calcareous and Limed Acid Soils. Soil Science Society of America Journal, 2000, 64, 2031-2037.	1.2	102
3	Effect of Trichoderma asperellum strain T34 on iron, copper, manganese, and zinc uptake by wheat grown on a calcareous medium. Plant and Soil, 2011, 342, 97-104.	1.8	101
4	Aspects of phosphorus transfer from soils in Europe. Journal of Plant Nutrition and Soil Science, 2008, 171, 552-575.	1.1	89
5	European soils overfertilized with phosphorus: Part 1. Basic properties. Fertilizer Research, 1996, 45, 199-207.	0.5	74
6	Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils. Soil Biology and Biochemistry, 2013, 57, 598-605.	4.2	70
7	The cumulative effect of three decades of phosphogypsum amendments in reclaimed marsh soils from SW Spain: 226Ra, 238U and Cd contents in soils and tomato fruit. Science of the Total Environment, 2008, 403, 80-88.	3.9	67
8	Phosphate-rich soils in the European Union: estimating total plant-available phosphorus. European Journal of Agronomy, 1997, 6, 205-214.	1.9	61
9	Effect of Soil Properties and Reclamation Practices on Phosphorus Dynamics in Reclaimed Calcareous Marsh Soils from the Guadalquivir Valley, SW Spain. Arid Land Research and Management, 2001, 15, 203-221.	0.6	55
10	The elusive role of soil quality in nutrient cycling: a review. Soil Use and Management, 2016, 32, 476-486.	2.6	53
11	Using Phosphorus Concentration in the Soil Solution to Predict Phosphorus Desorption to Water. Journal of Environmental Quality, 2001, 30, 1829-1835.	1.0	52
12	Predicting Iron Chlorosis of Lupin in Calcareous Spanish Soils from Iron Extracts. Soil Science Society of America Journal, 2006, 70, 1945-1950.	1.2	49
13	Effect of ammonium/nitrate ratio in nutrient solution on control of Fusarium wilt of tomato by <i>Trichoderma asperellum</i> T34. Plant Pathology, 2012, 61, 132-139.	1.2	49
14	A Global Perspective on Integrated Strategies to Manage Soil Phosphorus Status for Eutrophication Control without Limiting Land Productivity. Journal of Environmental Quality, 2019, 48, 1234-1246.	1.0	48
15	A comparison of two variable intensity rainfall simulators for runoff studies. Soil and Tillage Research, 2010, 107, 11-16.	2.6	47
16	Effect of Trichoderma asperellum strain T34 on iron nutrition in white lupin. Soil Biology and Biochemistry, 2009, 41, 2453-2459.	4.2	46
17	Soil chemical and biochemical properties of a salt-marsh alluvial Spanish area after long-term reclamation. Biology and Fertility of Soils, 2009, 45, 691-700.	2.3	45
18	Evaluation and correction of nutrient availability to Gerbera jamesonii H. Bolus in various compost-based growing media. Scientia Horticulturae, 2009, 122, 244-250.	1.7	40

#	Article	IF	CITATIONS
19	Phosphogypsum Amendment Effect on Radionuclide Content in Drainage Water and Marsh Soils from Southwestern Spain. Journal of Environmental Quality, 2003, 32, 1262.	1.0	39
20	Long-term effects of tillage on the availability of iron, copper, manganese, and zinc in a Spanish Vertisol. Soil and Tillage Research, 2008, 98, 200-207.	2.6	39
21	Phosphorus Fractions and Release Patterns in Typical Mediterranean Soils. Soil Science Society of America Journal, 2005, 69, 607-615.	1.2	37
22	Significance of Phosphorus for Agriculture and the Environment in the West Asia and North Africa Region. Advances in Agronomy, 2012, , 91-153.	2.4	37
23	Factors determining Zn availability and uptake by plants in soils developed under Mediterranean climate. Geoderma, 2020, 376, 114509.	2.3	36
24	Fertilizer Phosphorus Recovery from Gypsum-Amended, Reclaimed Calcareous Marsh Soils. Arid Land Research and Management, 2002, 16, 319-334.	0.6	35
25	Implications for food safety of the uptake by tomato of 25 trace-elements from a phosphogypsum amended soil from SW Spain. Journal of Hazardous Materials, 2014, 266, 122-131.	6.5	35
26	Zinc Uptake by Plants as Affected by Fertilization with Zn Sulfate, Phosphorus Availability, and Soil Properties. Agronomy, 2021, 11, 390.	1.3	35
27	Effects of Tillage on Phosphorus Release Potential in a Spanish Vertisol. Soil Science Society of America Journal, 2007, 71, 56-63.	1.2	34
28	Occupational dosimetric assessment (inhalation pathway) from the application of phosphogypsum in agriculture in South West Spain. Journal of Environmental Radioactivity, 2009, 100, 29-34.	0.9	33
29	Soil fertility assessment by Vis-NIR spectroscopy: Predicting soil functioning rather than availability indices. Geoderma, 2019, 337, 368-374.	2.3	33
30	Impact of gold-mining activity on trace elements enrichment in the West African estuaries: The case of Pra and Ankobra rivers with the Volta estuary (Ghana) as the reference. Journal of Geochemical Exploration, 2018, 190, 229-244.	1.5	32
31	Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe. Sustainability, 2018, 10, 794.	1.6	32
32	Transfer of Cd, Pb, Ra and U from Phosphogypsum Amended Soils to Tomato Plants. Water, Air, and Soil Pollution, 2009, 203, 65-77.	1.1	29
33	Calculation of threshold Olsen P values for fertilizer response from soil properties. Agronomy for Sustainable Development, 2016, 36, 1.	2.2	29
34	Calcium―and ironâ€related phosphorus in calcareous and calcareous marsh soils: Sequential chemical fractionation and 31p nuclear magnetic resonance study. Communications in Soil Science and Plant Analysis, 2000, 31, 2483-2499.	0.6	28
35	Accuracy of Olsen P to assess plant P uptake in relation to soil properties and P forms. Agronomy for Sustainable Development, 2015, 35, 1571-1579.	2.2	28
36	Effect of Bacillus subtilis on phosphorus uptake by cucumber as affected by iron oxides and the solubility of the phosphorus source. Agricultural and Food Science, 2016, 25, .	0.3	28

#	Article	IF	CITATIONS
37	Soil Quality Indicators as Affected by Shallow Tillage in a Vineyard Grown in a Semiarid Mediterranean Environment. Land Degradation and Development, 2017, 28, 1038-1046.	1.8	25
38	Phosphorus Loss in Tile Drains from a Reclaimed Marsh Soil Amended with Manure and Phosphogypsum. Nutrient Cycling in Agroecosystems, 2006, 74, 191-202.	1.1	24
39	Effect of various microorganisms on phosphorus uptake from insoluble Caâ€phosphates by cucumber plants. Journal of Plant Nutrition and Soil Science, 2016, 179, 454-465.	1.1	24
40	COMPARISON OF SOIL EXTRACTION PROCEDURES FOR ESTIMATING PHOSPHORUS RELEASE POTENTIAL OF AGRICULTURAL SOILS. Communications in Soil Science and Plant Analysis, 2001, 32, 87-105.	0.6	23
41	Evaluation of Soil Nitrate as a Predictor of Nitrogen Requirement for Sugar Beet Grown in a Mediterranean Climate. Agronomy Journal, 2004, 96, 18.	0.9	23
42	Iron Chlorosis in Gerber as Related to Properties of Various Types of Compost used as Growing Media. Communications in Soil Science and Plant Analysis, 2007, 38, 2357-2369.	0.6	23
43	Plant uptake of phosphorus from sparingly available P- sources as affected by Trichoderma asperellum T34. Agricultural and Food Science, 2015, 24, 249-260.	0.3	23
44	Limitations of the Olsen method to assess plant-available phosphorus in reclaimed marsh soils. Soil Use and Management, 2010, 26, 133-140.	2.6	22
45	Effects of humic substances on iron nutrition of lupin. Biology and Fertility of Soils, 2007, 43, 829-836.	2.3	21
46	Iron-related phosphorus in eroded sediments from agricultural soils of Mediterranean areas. Geoderma, 2005, 125, 1-9.	2.3	20
47	Estimation of total plant available phosphorus in representative soils from Mediterranean areas. Geoderma, 2017, 297, 10-18.	2.3	20
48	Humic substances increase the effectiveness of iron sulfate and Vivianite preventing iron chlorosis in white lupin. Biology and Fertility of Soils, 2008, 44, 875-883.	2.3	18
49	Bacillus subtilis QST713 and cellulose amendment enhance phosphorus uptake while improving zinc biofortification in wheat. Applied Soil Ecology, 2019, 142, 81-89.	2.1	18
50	Drain flow and related salt losses as affected by phosphogypsum amendment in reclaimed marsh soils from SW Spain. Geoderma, 2011, 161, 43-49.	2.3	17
51	A GIS-based quality assessment model for olive tree irrigation water in southern Spain. Agricultural Water Management, 2015, 148, 232-240.	2.4	16
52	Olive Husk Compost Improves the Quality of Intensively Cultivated Agricultural Soils. Land Degradation and Development, 2016, 27, 449-459.	1.8	16
53	FertiliCalc: A Decision Support System for Fertilizer Management. International Journal of Plant Production, 2020, 14, 299-308.	1.0	16
54	Organic Phosphorus Forms in Agricultural Soils under Mediterranean Climate. Soil Science Society of America Journal, 2018, 82, 783-795.	1.2	15

#	Article	IF	CITATIONS
55	The release of phosphorus from heavily fertilized soils to dilute electrolytes: effect of soil properties. Agronomy for Sustainable Development, 1999, 19, 395-404.	0.8	15
56	Automated Modification of the Molybdenum Blue Colorimetric Method for Phosphorus Determination in Soil Extracts. Communications in Soil Science and Plant Analysis, 2008, 39, 2250-2257.	0.6	14
57	Best management irrigation practices assessed by a GIS-based decision tool for reducing salinization risks in olive orchards. Agricultural Water Management, 2018, 202, 33-41.	2.4	14
58	Effect of Bacillus subtilis QST713 and Trichoderma asperellum T34 on P uptake by wheat and how it is modulated by soil properties. Journal of Soils and Sediments, 2018, 18, 727-738.	1.5	14
59	Relationship of soil fertility to biochemical properties under agricultural practices aimed at controlling land degradation. Land Degradation and Development, 2019, 30, 1121-1129.	1.8	14
60	A GIS-based decision tool for reducing salinization risks in olive orchards. Agricultural Water Management, 2016, 166, 33-41.	2.4	13
61	Photochemical emission and fixation of NOX gases in soils. Science of the Total Environment, 2020, 702, 134982.	3.9	13
62	Phosphorus in soils and its transfer to water: from fineâ€scale soil processes to models and solutions in landscapes and catchments. Soil Use and Management, 2013, 29, 1-5.	2.6	12
63	Predicting the Incidence of Iron Deficiency Chlorosis from Hydroxylamineâ€Extractable Iron in Soil. Soil Science Society of America Journal, 2008, 72, 1493-1499.	1.2	10
64	A Decision Support Model for Assessing the Water Regulation and Purification Potential of Agricultural Soils Across Europe. Frontiers in Sustainable Food Systems, 2020, 4, .	1.8	10
65	Evaluation of Soil Nitrate as a Predictor of Nitrogen Requirement for Sugar Beet Grown in a Mediterranean Climate. Agronomy Journal, 2004, 96, 18-25.	0.9	10
66	Effectiveness of mixtures of vivianite and organic materials in preventing iron chlorosis in strawberry. Spanish Journal of Agricultural Research, 2013, 11, 208.	0.3	10
67	ADVERSE EFFECTS OF HUMIC SUBSTANCES FROM DIFFERENT ORIGIN ON LUPIN AS RELATED TO IRON SOURCES. Journal of Plant Nutrition, 2010, 33, 143-156.	0.9	9
68	A GIS-based tool for integrated management of clogging risk and nitrogen fertilization in drip irrigation. Agricultural Water Management, 2017, 184, 86-95.	2.4	9
69	Incidence of Cotton Seedling Diseases Caused by Rhizoctonia solani and Thielaviopsis basicola in Relation to Previous Crop, Residue Management and Nutrients Availability in Soils in SW Spain. Journal of Phytopathology, 2005, 153, 710-714.	0.5	8
70	Shifts in microbial community structure influence the availability of Fe and other micronutrients to lupin (Lupinus albus L.). Applied Soil Ecology, 2019, 144, 42-50.	2.1	8
71	The adsorbent capacity of growing media does not constrain myo-inositol hexakiphosphate hydrolysis but its use as a phosphorus source by plants. Plant and Soil, 2021, 459, 277-288.	1.8	8
72	Phosphorus Forms in Overland Flow from Agricultural Soils Representative of Mediterranean Areas. Communications in Soil Science and Plant Analysis, 2006, 37, 1833-1844.	0.6	6

#	Article	IF	CITATIONS
73	Nitrate loss from a tile-drained reclaimed marsh soil from SW Spain amended with different products. Nutrient Cycling in Agroecosystems, 2011, 91, 255-267.	1.1	5
74	Phosphorus losses from two representative small catchments in the Mediterranean part of Spain. Journal of Soils and Sediments, 2013, 13, 1369-1377.	1.5	5
75	The determination of total phosphorus improves the accuracy of the bicarbonate extraction as an availability index. Soil Use and Management, 2019, 35, 346-354.	2.6	5
76	Fertilizers. , 2016, , 321-339.		5
77	Phosphogypsum amendments and irrigation with acidulated water affect tomato nutrition in reclaimed marsh soils from SW Spain. Spanish Journal of Agricultural Research, 2014, 12, 809.	0.3	5
78	Interaction between beet vinasse and iron fertilisers in the prevention of iron deficiency in lupins. Journal of the Science of Food and Agriculture, 2010, 90, 2188-2194.	1.7	4
79	Relief and calcium from gypsum as key factors for net inorganic carbon accumulation in soils of a semiarid Mediterranean environment. Geoderma, 2021, 398, 115115.	2.3	4
80	Early production of strawberry in aquaponic systems using commercial hydroponic bands. Aquacultural Engineering, 2022, 97, 102242.	1.4	4
81	Development of a recording water flow meter using ultrasonic measurement of water levels in a slotted U-pipe. Agricultural Water Management, 2007, 88, 263-268.	2.4	3
82	Nitrogen Fertilization I: The Nitrogen Balance. , 2016, , 341-368.		3
83	Iron availability thresholds for the inoculation of cucumber with <i>Trichoderma asperellum</i> T34. Journal of Plant Nutrition and Soil Science, 2013, 176, 867-875.	1.1	2
84	Nitrogen Fertilization II: Fertilizer Requirements. , 2016, , 369-380.		2
85	Soil properties modulate the effect of different carbon amendments on growth and phosphorus uptake by cucumber plant. Spanish Journal of Agricultural Research, 2022, 20, e1101-e1101.	0.3	1
86	Effect of Zn binding to phytate and humic substances on its uptake by wheat (Triticum durum L.) as affected by carbonates and Fe oxides. Pedosphere, 2022, 32, 823-832.	2.1	1
87	TEACHING CROP FERTILIZER REQUIREMENTS WITH THE NUTRIENT RECOMMENDATION MODEL FERTILICALC. , 2021		0