
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3283530/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Monte Carlo study of the relative biological effectiveness in surface brachytherapy. Medical Physics, 2022, 49, 5576-5588.	1.6	0
2	Review on Treatment Planning Systems for Cervix Brachytherapy (Interventional Radiotherapy): Some Desirable and Convenient Practical Aspects to Be Implemented from Radiation Oncologist and Medical Physics Perspectives. Cancers, 2022, 14, 3467.	1.7	2
3	Acute parotitis in high-dose-rate brachytherapy treatment for skin cancer: a case report. Journal of Contemporary Brachytherapy, 2021, 13, 493-496.	0.4	0
4	On the use of the absorbed depthâ€dose measurements in the beam calibration of a surface electronic highâ€doseâ€rate brachytherapy unit, a Monte Carloâ€based study. Medical Physics, 2020, 47, 693-702.	1.6	2
5	Phantom development for daily checks in electron intraoperative radiotherapy with a mobile linac. Physica Medica, 2020, 76, 109-116.	0.4	0
6	Surface brachytherapy: Joint report of the AAPM and the GECâ€ESTRO Task Group No. 253. Medical Physics, 2020, 47, e951-e987.	1.6	22
7	Inter-observer and intra-observer variability in reporting vaginal dose points for cervical cancer in high-dose-rate brachytherapy. Journal of Contemporary Brachytherapy, 2020, 12, 139-146.	0.4	5
8	Depth-dose measurement corrections for the surface electronic brachytherapy beams of an Esteya® unit: a Monte Carlo study. Physics in Medicine and Biology, 2020, 65, 245026.	1.6	2
9	GEC-ESTRO ACROP recommendations on calibration and traceability of LE-LDR photon-emitting brachytherapy sources at the hospital level. Radiotherapy and Oncology, 2019, 135, 120-129.	0.3	8
10	A Monte Carloâ€based dosimetric characterization of Esteya [®] , an electronic surface brachytherapy unit. Medical Physics, 2019, 46, 356-369.	1.6	5
11	GEC-ESTRO ACROP recommendations in skin brachytherapy. Radiotherapy and Oncology, 2018, 126, 377-385.	0.3	117
12	Air density dependence of the soft X-ray PTW 34013 ionization chamber. Physica Medica, 2018, 46, 109-113.	0.4	3
13	Interobserver variability in rectum contouring in high-dose-rate brachytherapy for prostate cancer: A multi-institutional prospective analysis. Brachytherapy, 2018, 17, 208-213.	0.2	6
14	Recommendations of the Spanish brachytherapy group (GEB) of Spanish Society of Radiation Oncology (SEOR) and the Spanish Society of Medical Physics (SEFM) for high-dose rate (HDR) non melanoma skin cancer brachytherapy. Clinical and Translational Oncology, 2018, 20, 431-442.	1.2	15
15	Failure modes and effects analysis of total skin electron irradiation technique. Clinical and Translational Oncology, 2018, 20, 330-365.	1.2	8
16	Review of strategies for MRI based reconstruction of endocavitary and interstitial applicators in brachytherapy of cervical cancer. Reports of Practical Oncology and Radiotherapy, 2018, 23, 547-561.	0.3	13
17	Permanent seed implant brachytherapy in low-risk prostate cancer: Preoperative planning with 145†Gy versus real-time intraoperative planning with 160†Gy. Reports of Practical Oncology and Radiotherapy, 2018, 23, 290-297.	0.3	5
18	Evaluation of the shielding in a treatment room with an electronic brachytherapy unit. Journal of Radiological Protection, 2017, 37, N5-N12,	0.6	5

JOSE PEREZ-CALATAYUD

#	Article	IF	CITATIONS
19	Air density dependence of the response of the PTW SourceCheck 4pi ionization chamber for 125 I brachytherapy seeds. Physica Medica, 2017, 38, 93-97.	0.4	3
20	High-dose-rate brachytherapy boost for prostate cancer: Analysis of dose-volume histogram parameters for predicting late rectal toxicity. Brachytherapy, 2017, 16, 511-517.	0.2	8
21	Towards clinical application of RayStretch for heterogeneity corrections in LDR permanent 125 I prostate brachytherapy. Brachytherapy, 2017, 16, 616-623.	0.2	1
22	Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy. Physics in Medicine and Biology, 2017, 62, 146-164.	1.6	5
23	Investigation of the influence of calibration practices on cytogenetic laboratory performance for dose estimation. International Journal of Radiation Biology, 2017, 93, 118-126.	1.0	22
24	Two years results of electronic brachytherapy for basal cell carcinoma. Journal of Contemporary Brachytherapy, 2017, 3, 251-255.	0.4	11
25	A method to incorporate interstitial components into the TPS gynecologic rigid applicator library. Journal of Contemporary Brachytherapy, 2017, 1, 59-65.	0.4	7
26	Pre-plan technique feasibility in multi-interstitial/endocavitary perineal gynecological brachytherapy. Journal of Contemporary Brachytherapy, 2017, 5, 472-476.	0.4	3
27	Electronic brachytherapy for superficial and nodular basal cell carcinoma: a report of two prospective pilot trials using different doses. Journal of Contemporary Brachytherapy, 2016, 1, 48-55.	0.4	31
28	An evaluation of the robustness of organ-at-risk recommendations made by GEC/ESTRO according to interobserver variability: a single-center experience. Journal of Contemporary Brachytherapy, 2016, 4, 349-355.	0.4	2
29	Commissioning and quality assurance procedures for the HDR Valencia skin applicators. Journal of Contemporary Brachytherapy, 2016, 5, 441-447.	0.4	12
30	Failure mode and effects analysis of skin electronic brachytherapy using Esteya® unit. Journal of Contemporary Brachytherapy, 2016, 6, 518-524.	0.4	10
31	Development and clinical implementation of a new template for MRI-based intracavitary/interstitial gynecologic brachytherapy for locally advanced cervical cancer: from CT-based MUPIT to the MRI compatible Template Benidorm. Ten years of experience. Journal of Contemporary Brachytherapy, 2016, 5, 404-414.	0.4	12
32	Novel simple templates for reproducible positioning of skin applicators in brachytherapy. Journal of Contemporary Brachytherapy, 2016, 4, 344-348.	0.4	12
33	Process map for FMEA risk analysis implementation by TG-100 of AAPM in Total Skin Electron Irradiation (TSEI) technique. , 2016, , .		0
34	Response to "Comment on â€~Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for lowâ€energy surface brachytherapy dosimetry' ―[Med. Phys. 42 , 4954–4964 (2015)]. Medical Physics, 2016, 43, 2007-2008.	1.6	0
35	Design and characterization of a new highâ€doseâ€rate brachytherapy Valencia applicator for larger skin lesions. Medical Physics, 2016, 43, 1639-1648.	1.6	15
36	Radiation dose distribution around a mobile linear accelerator Mobetron using Monte Carlo simulation. , 2016, , .		0

3

#	Article	IF	CITATIONS
37	Transit dose comparisons for ⁶⁰ Co and ¹⁹² Ir HDR sources. Journal of Radiological Protection, 2016, 36, 858-864.	0.6	2
38	Technical Note: Dosimetry of Leipzig and Valencia applicators without the plastic cap. Medical Physics, 2016, 43, 2087-2090.	1.6	17
39	A brachytherapy photon radiation quality index Q BT for probe-type dosimetry. Physica Medica, 2016, 32, 741-748.	0.4	2
40	Influence of source batch SK dispersion on dosimetry for prostate cancer treatment with permanent implants. Medical Physics, 2015, 42, 4933-4940.	1.6	1
41	Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for lowâ€energy surface brachytherapy dosimetry. Medical Physics, 2015, 42, 4954-4964.	1.6	13
42	Commissioning and periodic tests of the Esteya \hat{A}^{\circledast} electronic brachytherapy system. Journal of Contemporary Brachytherapy, 2015, 2, 189-195.	0.4	17
43	Original paper Efficacy and safety of electronic brachytherapy for superficial and nodular basal cell carcinoma. Journal of Contemporary Brachytherapy, 2015, 3, 231-238.	0.4	27
44	A practical MRI-based reconstruction method for a new endocavitary and interstitial gynaecological template. Journal of Contemporary Brachytherapy, 2015, 5, 407-414.	0.4	8
45	Assaying multiple 125 I seeds with the well-ionization chamber SourceCheck 4Ï€ 33005 and a new insert. Journal of Contemporary Brachytherapy, 2015, 6, 492-496.	0.4	3
46	Characterization of the PTW SourceCheck ionization chamber with the Valencia lodgment for 125 I seed verification. Physica Medica, 2015, 31, 922-928.	0.4	1
47	Evaluation of lens absorbed dose with Cone Beam IGRT procedures. Journal of Radiological Protection, 2015, 35, N33-N41.	0.6	Ο
48	Validation of a deformable image registration produced by a commercial treatment planning system in head and neck. Physica Medica, 2015, 31, 219-223.	0.4	42
49	Dermoscopy margin delineation in radiotherapy planning for superficial or nodular basal cell carcinoma. British Journal of Dermatology, 2015, 172, 1162-1163.	1.4	14
50	A simple analytical method for heterogeneity corrections in low dose rate prostate brachytherapy. Physics in Medicine and Biology, 2015, 60, 5455-5469.	1.6	3
51	Aspects of dosimetry and clinical practice of skin brachytherapy: The American Brachytherapy Society working group report. Brachytherapy, 2015, 14, 840-858.	0.2	110
52	Fetal dose measurements and shielding efficiency assessment in a custom setup of 192Ir brachytherapy for a pregnant woman with breast cancer. Physica Medica, 2015, 31, 286-292.	0.4	3
53	In reply to the Letter to the Editor titled: "Comments on: Clinical implementation of a new electronic brachytherapy system for skin brachytherapy― Journal of Contemporary Brachytherapy, 2015, 4, 319-320.	0.4	1
54	Air-kerma evaluation at the maze entrance of HDR brachytherapy facilities. Journal of Radiological Protection, 2014, 34, 741-753.	0.6	1

#	Article	IF	CITATIONS
55	Non-melanoma skin cancer treated with HDR Valencia applicator: clinical outcomes. Journal of Contemporary Brachytherapy, 2014, 2, 167-172.	0.4	66
56	Depth determination of skin cancers treated with superficial brachytherapy: ultrasound vs. histopathology. Journal of Contemporary Brachytherapy, 2014, 4, 356-361.	0.4	21
57	Clinical implementation of a new electronic brachytherapy system for skin brachytherapy. Journal of Contemporary Brachytherapy, 2014, 4, 417-423.	0.4	34
58	Dosimetric characteristics of a new unit for electronic skin brachytherapy. Journal of Contemporary Brachytherapy, 2014, 1, 45-53.	0.4	47
59	Limitations of the TGâ€43 formalism for skin highâ€doseâ€rate brachytherapy dose calculations. Medical Physics, 2014, 41, 021703.	1.6	27
60	Commissioning and initial experience with a commercial software for inÂvivo volumetric dosimetry. Physica Medica, 2014, 30, 954-959.	0.4	21
61	Dosimetric perturbations of a lead shield for surface and interstitial high-dose-rate brachytherapy. Journal of Radiological Protection, 2014, 34, 297-311.	0.6	10
62	Review of clinical brachytherapy uncertainties: Analysis guidelines of GEC-ESTRO and the AAPM. Radiotherapy and Oncology, 2014, 110, 199-212.	0.3	243
63	Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma. Medical Physics, 2013, 40, 033901.	1.6	17
64	Monte Carlo dosimetric study of the medium dose rate CSM40 source. Applied Radiation and Isotopes, 2013, 82, 283-288.	0.7	9
65	Radiation leakage study for the Valencia applicators. Physica Medica, 2013, 29, 60-64.	0.4	17
66	Dependence with air density of the response of the PTW SourceCheck ionization chamber for low energy brachytherapy sources. Medical Physics, 2013, 40, 122103.	1.6	7
67	Impact of the Tiloop Bra mesh in CT images and dose delivery in breast radiotherapy. Journal of Applied Clinical Medical Physics, 2012, 13, 13-19.	0.8	5
68	Reply to "Comment on â€~Correspondence factor for Nucletron surface applicators'―[Med. Phys. 39, 2947-2948 (2012)]. Medical Physics, 2012, 39, 2310-2311.	1.6	5
69	Dosimetry comparison between TG-43 and Monte Carlo calculations using the Freiburg flap for skin high-dose-rate brachytherapy. Brachytherapy, 2012, 11, 528-535.	0.2	18
70	QA of dynamic MLC based on EPID portal dosimetry. Physica Medica, 2012, 28, 262-268.	0.4	22
71	Dose calculation for photonâ€emitting brachytherapy sources with average energy higher than 50 keV: Report of the AAPM and ESTRO. Medical Physics, 2012, 39, 2904-2929.	1.6	219
72	Monte Carlo dosimetric study of the Flexisource Co-60 high dose rate source. Journal of Contemporary Brachytherapy, 2012, 1, 34-44.	0.4	25

#	Article	IF	CITATIONS
73	Physics Contributions I-125 seed calibration using the SeedSelectron® afterloader: a practical solution to fulfill AAPM-ESTRO recommendations. Journal of Contemporary Brachytherapy, 2012, 1, 21-28.	0.4	6
74	Consensus on treatment of endometrium carcinoma with brachytherapy. Clinical and Translational Oncology, 2012, 14, 263-270.	1.2	15
75	Physics Contributions Dosimetric evaluation of internal shielding in a High Dose Rate skin applicator. Journal of Contemporary Brachytherapy, 2011, 1, 32-38.	0.4	15
76	The use of nomograms in LDR-HDR prostate brachytherapy. Journal of Contemporary Brachytherapy, 2011, 3, 121-124.	0.4	7
77	Study of encapsulated T170m sources for their potential use in brachytherapy. Medical Physics, 2010, 37, 1629-1637.	1.6	23
78	Consensus on 3D treatment planning in gynaecologic brachytherapy of the Radiation Oncology Spanish Society (SEOR) Brachytherapy Group. Clinical and Translational Oncology, 2010, 12, 181-187.	1.2	4
79	Physics Contributions Evaluation of interpolation methods for TG-43 dosimetric parameters based on comparison with Monte Carlo data for high-energy brachytherapy sources. Journal of Contemporary Brachytherapy, 2010, 1, 28-32.	0.4	7
80	Physics Contributions A program for the independent verification ofâ€`brachytherapy planning system calculations. Journal of Contemporary Brachytherapy, 2010, 3, 129-133.	0.4	10
81	Influence of photon energy spectra from brachytherapy sources on Monte Carlo simulations of kerma and dose rates in water and air. Medical Physics, 2010, 37, 869-876.	1.6	70
82	Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: Considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiotherapy and Oncology, 2010, 96, 153-160.	0.3	263
83	An approach to using conventional brachytherapy software for clinical treatment planning of	1.6	41
84	TGâ€43 U1 based dosimetric characterization of model 67â€6520 Csâ€137 brachytherapy source. Medical Physics, 2009, 36, 4711-4719.	1.6	11
85	Evaluation of highâ€energy brachytherapy source electronic disequilibrium and dose from emitted electrons. Medical Physics, 2009, 36, 4250-4256.	1.6	50
86	Exclusive MRI-based tandem and colpostats reconstruction in gynaecological brachytherapy treatment planning. Radiotherapy and Oncology, 2009, 91, 181-186.	0.3	38
87	Monte Carlo Application in Brachytherapy Dosimetry. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 239-250.	0.2	1
88	Monte Carlo study of the dose rate distributions for the Ir2.A85â€2 and Ir2.A85â€1 Irâ€192 afterloading sources. Medical Physics, 2008, 35, 1280-1287.	1.6	20
89	Equivalent phantom sizes and shapes for brachytherapy dosimetric studies of and. Medical Physics, 2008, 35, 4872-4877.	1.6	36
90	Design and evaluation of a HDR skin applicator with flattening filter. Medical Physics, 2008, 35, 495-503.	1.6	53

#	Article	IF	CITATIONS
91	Dosimetric characterization of Irâ€192 LDR elongated sources. Medical Physics, 2008, 35, 1154-1161.	1.6	10
92	Dosimetric prerequisites for routine clinical use of photon emitting brachytherapy sources with	1.6	46
93	Broad-beam transmission data for new brachytherapy sources, Tm-170 and Yb-169. Radiation Protection Dosimetry, 2006, 118, 11-15.	0.4	28
94	A dosimetric study of Leipzig applicators. International Journal of Radiation Oncology Biology Physics, 2005, 62, 579-584.	0.4	62
95	Induced attenuation in Ce3+ and Nd3+ doped fibers irradiated with electron beams under low dose regime. Optics Communications, 2005, 252, 286-291.	1.0	7
96	Monte Carlo dosimetric study of the BEBIG Co-60 HDR source. Physics in Medicine and Biology, 2005, 50, N309-N316.	1.6	51
97	Technique for routine output verification of Leipzig applicators with a well chamber. Medical Physics, 2005, 33, 16-20.	1.6	18
98	Monte Carlo calculation of the TC-43 dosimetric parameters of a new BEBIG Ir-192 HDR source. Radiotherapy and Oncology, 2005, 76, 79-85.	0.3	34
99	A Monte Carlo study of intersource effects in dome-type applicators loaded with LDR Cs-137 sources. Radiotherapy and Oncology, 2005, 77, 216-219.	0.3	7
100	Technical note: Monte Carlo derivation of TG-43 dosimetric parameters for radiation therapy resources and 3M Cs-137 sources. Medical Physics, 2005, 32, 2464-2470.	1.6	14
101	Monte Carlo dosimetric characterization of the Cs-137 selectron/LDR source: Evaluation of applicator attenuation and superposition approximation effects. Medical Physics, 2004, 31, 493-499.	1.6	36
102	Monte Carlo evaluation of kerma in an HDR brachytherapy bunker. Physics in Medicine and Biology, 2004, 49, N389-N396.	1.6	7
103	Monte Carlo and experimental derivation of TG43 dosimetric parameters for CSM-type Cs-137 sources. Medical Physics, 2004, 32, 28-36.	1.6	29
104	Dosimetric study of the 15mm ROPES eye plaque. Medical Physics, 2004, 31, 3330-3336.	1.6	33
105	Monte Carlo dosimetric study of Best Industries and Alpha Omega Ir-192 brachytherapy seeds. Medical Physics, 2004, 31, 3298-3305.	1.6	38
106	Phantom size in brachytherapy source dosimetric studies. Medical Physics, 2004, 31, 2075-2081.	1.6	123
107	Detection of low-dose electron radiation using rare-earth-doped optical fibers. , 2004, , .		0
108	Technical note: Fitted dosimetric parameters of high dose-rate 192Ir sources according to the AAPM TG43 formalism. Medical Physics, 2003, 30, 651-654.	1.6	8

#	Article	IF	CITATIONS
109	Influence of the non-homogeneity of Ir-192 wires in calibration of well chambers. Physics in Medicine and Biology, 2003, 48, 3961-3968.	1.6	3
110	Dosimetric characteristics of the CDC-type miniature cylindrical 137Cs brachytherapy sources. Medical Physics, 2002, 29, 538-543.	1.6	12
111	Monte Carlo calculation of dose rate distributions around the Walstam CDC.K-type137Cs sources. Physics in Medicine and Biology, 2001, 46, 2029-2040.	1.6	9
112	Assessment of the linear reference air kerma rate of1921r wires. Physics in Medicine and Biology, 2001, 46, 2201-2207.	1.6	3
113	Monte Carlo dosimetry of the Buchler high dose rate192Ir source. Physics in Medicine and Biology, 2001, 46, N79-N90.	1.6	24
114	A Monte Carlo study of dose rate distribution around the specially asymmetric CSM3-a137Cs source. Physics in Medicine and Biology, 2001, 46, N169-N174.	1.6	7
115	Technical note: Monte-Carlo dosimetry of the HDR 12i and Plus 192Ir sources. Medical Physics, 2001, 28, 2586-2591.	1.6	61
116	Dosimetry characteristics of the Plus and 12i Gammamed PDR 192Ir sources. Medical Physics, 2001, 28, 2576-2585.	1.6	21
117	Fitted dosimetric parameters of high dose-rate 192Ir sources according to the AAPM TG43 formalism. Medical Physics, 2001, 28, 654-660.	1.6	13
118	Dosimetric characteristics of backscattered electrons in lead. Physics in Medicine and Biology, 2000, 45, 1841-1849.	1.6	23
119	Monte Carlo calculations of dose rate distributions around the Amersham CDCS-M-type 137Cs source. Medical Physics, 2000, 27, 132-140.	1.6	27
120	A Monte Carlo investigation of the dosimetric characteristics of the CSM11 137Cs source from CIS. Medical Physics, 2000, 27, 2182-2189.	1.6	24
121	Monte Carlo calculation of dose rate distributions around 0.5 and 0.6 mm in diameter 192Ir wires. Medical Physics, 1999, 26, 395-401.	1.6	12
122	Monte Carlo calculation of dose rate distributions around Ir192 wires. Medical Physics, 1997, 24, 1221-1228.	1.6	56
123	Virtual wedge dosimetric behavior with monitor units number. , 0, , .		0