Wenping Hu

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/328329/wenping-hu-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

86 692 146 30,214 g-index h-index citations papers 7.67 11.5 757 35,551 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
692	Cocrystal engineering: Tuning the charge transfer excitons for highly sensitive luminescent switching materials under multiple stimuli. <i>Science China Materials</i> , 2022 , 65, 1320	7.1	1
691	Two Dimensional Covalent Organic Frameworks: From Synthetic Strategies to Advanced optical-electrical-magnetic Functionalities <i>Advanced Materials</i> , 2022 , e2102290	24	13
690	Additive-Assisted Growth of Scaled and Quality 2D Materials <i>Small</i> , 2022 , e2107241	11	4
689	Asymmetric Chemical Functionalization of Top-Contact Electrodes: Tuning the Charge Injection for High Performance MoS Field-Effect Transistors and Schottky Diodes <i>Advanced Materials</i> , 2022 , e21094	4 4\$	1
688	Coherently degenerate state engineering of organic small molecule materials to generate Wannier excitons. <i>Chemical Physics Impact</i> , 2022 , 4, 100062	1.6	O
687	Perspectives of ionic covalent organic frameworks for rechargeable batteries. <i>Coordination Chemistry Reviews</i> , 2022 , 458, 214431	23.2	3
686	Iron regulates the interfacial charge distribution of transition metal phosphides for enhanced oxygen evolution reaction <i>Journal of Colloid and Interface Science</i> , 2022 , 615, 725-731	9.3	O
685	Enhanced redox activity and oxygen vacancies of perovskite triggered by copper incorporation for the improvement of electro-Fenton activity. <i>Chemical Engineering Journal</i> , 2022 , 428, 131352	14.7	8
684	Enhanced electron transfer and hydrogen peroxide activation capacity with N, P-codoped carbon encapsulated CeO in heterogeneous electro-Fenton process. <i>Chemosphere</i> , 2022 , 287, 132154	8.4	4
683	Research on Key Materials and Devices of Organic Light-emitting Transistors?. <i>Acta Chimica Sinica</i> , 2022 , 80, 327	3.3	1
682	Band-Like Charge Transport in Small-Molecule Thin Film toward High-Performance Organic Phototransistors at Low Temperature. <i>Advanced Optical Materials</i> , 2022 , 10, 2102484	8.1	3
681	Topological supramolecular network enabled high-conductivity, stretchable organic bioelectronics <i>Science</i> , 2022 , 375, 1411-1417	33.3	29
680	Negative Phototransistors with Ultrahigh Sensitivity and Weak-Light Detection Based on 1D/2D Molecular Crystal p-n Heterojunctions and their Application in Light Encoders <i>Advanced Materials</i> , 2022 , e2201364	24	5
679	Balancing the film strain of organic semiconductors for ultrastable organic transistors with a five-year lifetime <i>Nature Communications</i> , 2022 , 13, 1480	17.4	3
678	Pathway Manipulation via Ni, Co, and V Ternary Synergism to Realize High Efficiency for Urea Electrocatalytic Oxidation. <i>ACS Catalysis</i> , 2022 , 12, 569-579	13.1	13
677	Efficient energy transfer in organic light-emitting transistor with tunable wavelength. <i>Nano Research</i> , 2022 , 15, 3647-3652	10	1
676	High-performance five-ring-fused organic semiconductors for field-effect transistors <i>Chemical Society Reviews</i> , 2022 ,	58.5	6

(2021-2022)

675	Oxygen-Assisted Anisotropic Chemical Etching of MoSe2 for Enhanced Phototransistors. <i>Chemistry of Materials</i> , 2022 , 34, 4212-4223	9.6	2
674	Highly Efficient Contact Doping for High-Performance Organic UV-Sensitive Phototransistors. <i>Crystals</i> , 2022 , 12, 651	2.3	1
673	Octahedron of zero-valent and mono-valent copper anchored on nitrogen doping porous carbon to enhance heterogeneous electro-Fenton like activity. <i>Journal of Water Process Engineering</i> , 2022 , 47, 10	2803	О
672	Continuous orientated growth of scaled single-crystal 2D monolayer films. <i>Nanoscale Advances</i> , 2021 , 3, 6545-6567	5.1	O
671	Constructing Cu2O/Bi2MoO6 pli heterojunction towards boosted photo-assisted-electro-Fenton-like synergy degradation of ciprofloxacin. <i>Environmental Science:</i> Nano, 2021 , 8, 3629-3642	7.1	О
670	Creating Organic Functional Materials beyond Chemical Bond Synthesis by Organic Cocrystal Engineering. <i>Journal of the American Chemical Society</i> , 2021 , 143, 19243-19256	16.4	12
669	Solution-processed crystalline organic integrated circuits. <i>Matter</i> , 2021 , 4, 3415-3443	12.7	2
668	Capillary Confinement Crystallization for Monolayer Molecular Crystal Arrays. <i>Advanced Materials</i> , 2021 , e2107574	24	6
667	Redistributed Current Density in Lateral Organic Light-emitting Transistors Enabling Uniform Area Emission with Good Stability and Arbitrary Tunability. <i>Advanced Materials</i> , 2021 , e2108795	24	7
666	Recent progress on organic exciplex materials with different donor ceptor contacting modes for luminescent applications. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 16843-16858	7.1	6
665	Recent Advances in Interface Engineering for Electrocatalytic CO Reduction Reaction. <i>Nano-Micro Letters</i> , 2021 , 13, 216	19.5	6
664	Amine-Anchored Aromatic Self-Assembled Monolayer Junction: Structure and Electric Transport Properties. <i>Langmuir</i> , 2021 , 37, 12223-12233	4	
663	Polymer-Assisted Space-Confined Strategy for the Foot-Scale Synthesis of Flexible Metal-Organic Framework-Based Composite Films. <i>Journal of the American Chemical Society</i> , 2021 , 143, 17526-17534	16.4	3
662	Intrinsic Linear Dichroism of Organic Single Crystals toward High-Performance Polarization-Sensitive Photodetectors. <i>Advanced Materials</i> , 2021 , e2105665	24	6
661	Color-Tunable Supramolecular Luminescent Materials. Advanced Materials, 2021, e2105405	24	11
660	Organic Field-Effect Transistor-Based Biosensors with Enhanced Sensitivity and Reliability under Illumination for Carcinoembryonic Antigen Bioassay. <i>Analytical Chemistry</i> , 2021 , 93, 15167-15174	7.8	
659	Ultrasensitive and Reliable Organic Field-Effect Transistor-Based Biosensors in Early Liver Cancer Diagnosis. <i>Analytical Chemistry</i> , 2021 , 93, 6188-6194	7.8	13
658	Deep insight into the charge transfer interactions in 1,2,4,5-tetracyanobenzene-phenazine cocrystal. <i>Chinese Chemical Letters</i> , 2021 , 32, 3007-3007	8.1	4

657	Effect of contact resistance in organic field-effect transistors. <i>Nano Select</i> , 2021 , 2, 1661-1681	3.1	6
656	Organic thin film transistors-based biosensors. <i>EcoMat</i> , 2021 , 3, e12094	9.4	17
655	Dual-function surfactant strategy for two-dimensional organic semiconductor crystals towards high-performance organic field-effect transistors. <i>Science China Chemistry</i> , 2021 , 64, 1057-1062	7.9	7
654	Functionalization of Low-k Polyimide Gate Dielectrics with Self-Assembly Monolayer Toward High-Performance Organic Field-Effect Transistors and Circuits. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100217	4.6	6
653	2D MXene-Molecular Hybrid Additive for High-Performance Ambipolar Polymer Field-Effect Transistors and Logic Gates. <i>Advanced Materials</i> , 2021 , 33, e2008215	24	7
652	1D Mixed-Stack Cocrystals Based on Perylene Diimide toward Ambipolar Charge Transport. <i>Small</i> , 2021 , 17, e2006574	11	6
651	Directly Patterning Conductive Polymer Electrodes on Organic Semiconductor via In Situ Polymerization in Microchannels for High-Performance Organic Transistors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 17852-17860	9.5	9
650	Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium-Metal Anodes. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10871-10879	16.4	35
649	Sequence modulation of tunneling barrier and charge transport across histidine doped oligo-alanine molecular junctions. <i>Chinese Chemical Letters</i> , 2021 , 32, 3782-3782	8.1	0
648	The More, the Better R ecent Advances in Construction of 2D Multi-Heterostructures. <i>Advanced Functional Materials</i> , 2021 , 31, 2102049	15.6	9
647	Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium Metal Anodes. <i>Angewandte Chemie</i> , 2021 , 133, 10966-10974	3.6	7
646	Revealing molecular conformation-induced stress at embedded interfaces of organic optoelectronic devices by sum frequency generation spectroscopy. <i>Science Advances</i> , 2021 , 7,	14.3	15
645	Sub-5 nm single crystalline organic p-n heterojunctions. <i>Nature Communications</i> , 2021 , 12, 2774	17.4	20
644	p-n heterojunctions composed of two-dimensional molecular crystals for high-performance ambipolar organic field-effect transistors. <i>APL Materials</i> , 2021 , 9, 051108	5.7	6
643	Bandgap Engineering of an Aryl-Fused Tetrathianaphthalene for Visible-Blind Organic Field-Effect Transistors. <i>Frontiers in Chemistry</i> , 2021 , 9, 698246	5	0
642	Organic Light-Emitting Transistors Entering a New Development Stage. <i>Advanced Materials</i> , 2021 , 33, e2007149	24	33
641	Recent Advances of Nanospheres Lithography in Organic Electronics. <i>Small</i> , 2021 , 17, e2100724	11	4
640	Prominent role of oxygen vacancy for superoxide radical and hydroxyl radical formation to promote electro-Fenton like reaction by W-doped CeO2 composites. <i>Applied Surface Science</i> , 2021 , 549, 149262	6.7	16

639	Tandem catalysis in electrochemical CO2 reduction reaction. Nano Research, 2021, 14, 4471	10	26
638	Spin injection and transport in single-crystalline organic spin valves based on TIPS-pentacene. <i>Science China Materials</i> , 2021 , 64, 2795-2804	7.1	3
637	Molecular Weight Engineering in High-Performance Ambipolar Emissive Mesopolymers. Angewandte Chemie - International Edition, 2021 , 60, 14902-14908	16.4	13
636	Well-balanced ambipolar diketopyrrolopyrrole-based copolymers for OFETs, inverters and frequency doublers. <i>Science China Chemistry</i> , 2021 , 64, 1410-1416	7.9	5
635	Isomeric Dibenzoheptazethrenes for Air-Stable Organic Field-Effect Transistors. <i>Angewandte Chemie</i> , 2021 , 133, 16366-16372	3.6	О
634	Molecular Weight Engineering in High-Performance Ambipolar Emissive Mesopolymers. <i>Angewandte Chemie</i> , 2021 , 133, 15028-15034	3.6	2
633	Nanospheres Lithography: Recent Advances of Nanospheres Lithography in Organic Electronics (Small 28/2021). <i>Small</i> , 2021 , 17, 2170145	11	0
632	Successive Storage of Cations and Anions by Ligands of 댄-Conjugated Coordination Polymers Enabling Robust Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18769-1877	76 ^{6.4}	12
631	Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displacement Reactions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 17937-17941	16.4	14
630	Spatially Selective Imaging of Mitochondrial MicroRNAs via Optically Programmable Strand Displacement Reactions. <i>Angewandte Chemie</i> , 2021 , 133, 18081-18085	3.6	2
629	Facile Functionalization Strategy for Ultrasensitive Organic Protein Biochips in Multi-Biomarker Determination. <i>Analytical Chemistry</i> , 2021 , 93, 11305-11311	7.8	4
628	Molecular cocrystal odyssey to unconventional electronics and photonics. <i>Science Bulletin</i> , 2021 , 66, 512	2 15 2 6	9
627	Polymorph and anisotropic Raman spectroscopy of Phz-H2ca cocrystals. <i>Science China Materials</i> , 2021 , 64, 169-178	7.1	3
626	Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission. <i>Angewandte Chemie</i> , 2021 , 133, 285-293	3.6	2
625	Cocrystallization Tailoring Multiple Radiative Decay Pathways for Amplified Spontaneous Emission. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 281-289	16.4	16
624	Unveiling the role of Fe3O4 in polymer spin valve near Verwey transition. <i>Nano Research</i> , 2021 , 14, 304-	-3/1:0	4
623	Exciton Transport in Molecular Semiconductor Crystals for Spin-Optoelectronics Paradigm. <i>Chemistry - A European Journal</i> , 2021 , 27, 222-227	4.8	3
622	Recent Advances in Growth of Large-Sized 2D Single Crystals on Cu Substrates. <i>Advanced Materials</i> , 2021 , 33, e2003956	24	16

621	Short Alkyl Chain Engineering Modulation on Naphthalene Flanked Diketopyrrolopyrrole toward High-Performance Single Crystal Transistors and Organic Thin Film Displays. <i>Advanced Electronic Materials</i> , 2021 , 7, 2000804	6.4	11
620	Copper Tetracyanoquinodimethane: From Micro/Nanostructures to Applications. <i>Small</i> , 2021 , 17, e200	41 4 3	2
619	A FeNi5P4/FeNi2P heterojunction electrocatalyst for highly efficient solar-to-hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 1221-1229	13	9
618	Cocrystal Engineering: Toward Solution-Processed Near-Infrared 2D Organic Cocrystals for Broadband Photodetection. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 6344-6350	16.4	18
617	Research progress of rubrene as an excellent multifunctional organic semiconductor. <i>Frontiers of Physics</i> , 2021 , 16, 1	3.7	6
616	Eggshell-inspired membraneBhell strategy for simultaneously improving the sensitivity and detection range of strain sensors. <i>Science China Materials</i> , 2021 , 64, 717-726	7.1	5
615	Organic photoelectric materials for X-ray and gamma ray detection: mechanism, material preparation and application. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 4709-4729	7.1	9
614	High-Quality Two-Dimensional Metal-Organic Framework Nanofilms for Nonvolatile Memristive Switching. <i>Small Structures</i> , 2021 , 2, 2000077	8.7	7
613	Long afterglow MOFs: a frontier study on synthesis and applications. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 6824-6849	7.8	5
612	Effectively modulating thermal activated charge transport in organic semiconductors by precise		18
012	potential barrier engineering. <i>Nature Communications</i> , 2021 , 12, 21	17.4	10
611	Ultra-thin two-dimensional molecular crystals grown on a liquid surface for high-performance phototransistors. <i>Chemical Communications</i> , 2021 , 57, 2669-2672	5.8	8
	Ultra-thin two-dimensional molecular crystals grown on a liquid surface for high-performance		
611	Ultra-thin two-dimensional molecular crystals grown on a liquid surface for high-performance phototransistors. <i>Chemical Communications</i> , 2021 , 57, 2669-2672		8
610	Ultra-thin two-dimensional molecular crystals grown on a liquid surface for high-performance phototransistors. <i>Chemical Communications</i> , 2021 , 57, 2669-2672 One-Pot Confined Epitaxial Growth of 2D Heterostructure Arrays 2021 , 3, 217-223 Boronic ester Sierpißki triangle fractals: from precursor design to on-surface synthesis and	5.8	8
611610609	Ultra-thin two-dimensional molecular crystals grown on a liquid surface for high-performance phototransistors. <i>Chemical Communications</i> , 2021 , 57, 2669-2672 One-Pot Confined Epitaxial Growth of 2D Heterostructure Arrays 2021 , 3, 217-223 Boronic ester Sierpißki triangle fractals: from precursor design to on-surface synthesis and self-assembling superstructures. <i>Chemical Communications</i> , 2021 , 57, 2065-2068 The external electric field effect on the charge transport performance of organic semiconductors: a	5.8	8 4 5
611 610 609 608	Ultra-thin two-dimensional molecular crystals grown on a liquid surface for high-performance phototransistors. <i>Chemical Communications</i> , 2021 , 57, 2669-2672 One-Pot Confined Epitaxial Growth of 2D Heterostructure Arrays 2021 , 3, 217-223 Boronic ester Sierpißki triangle fractals: from precursor design to on-surface synthesis and self-assembling superstructures. <i>Chemical Communications</i> , 2021 , 57, 2065-2068 The external electric field effect on the charge transport performance of organic semiconductors: a theoretical investigation. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 21044-21050 An intermolecular hydrogen bond plays a determining role in product selection of a surface	5.8 5.8	8 4 5
611610609608607	Ultra-thin two-dimensional molecular crystals grown on a liquid surface for high-performance phototransistors. <i>Chemical Communications</i> , 2021 , 57, 2669-2672 One-Pot Confined Epitaxial Growth of 2D Heterostructure Arrays 2021 , 3, 217-223 Boronic ester Sierpißki triangle fractals: from precursor design to on-surface synthesis and self-assembling superstructures. <i>Chemical Communications</i> , 2021 , 57, 2065-2068 The external electric field effect on the charge transport performance of organic semiconductors: a theoretical investigation. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 21044-21050 An intermolecular hydrogen bond plays a determining role in product selection of a surface confined Schiff-base reaction. <i>Chemical Communications</i> , 2021 , 57, 6495-6498 Stencil mask defined doctor blade printing of organic single crystal arrays for high-performance	5.8 5.8 13	8 4 5 1 0

(2021-2021)

603	Engineering the Interfacial Materials of Organic Field-Effect Transistors for Efficient Charge Transport. <i>Accounts of Materials Research</i> , 2021 , 2, 159-169	7.5	2	
602	Electrically Conductive Coordination Polymers for Electronic and Optoelectronic Device Applications. <i>Journal of Physical Chemistry Letters</i> , 2021 , 12, 1612-1630	6.4	20	
601	Tailoring the strength and number of halogen bonds toward room temperature phosphorescent micro-cocrystals. <i>Nano Select</i> , 2021 , 2, 1509-1516	3.1	1	
600	Cocrystal Engineering: Toward Solution-Processed Near-Infrared 2D Organic Cocrystals for Broadband Photodetection. <i>Angewandte Chemie</i> , 2021 , 133, 6414-6420	3.6	3	
599	Vertical-organic-nanocrystal-arrays for crossbar memristors with tuning switching dynamics toward neuromorphic computing. <i>SmartMat</i> , 2021 , 2, 99-108	22.8	32	
598	Electron configurations at 3d orbital of metal ion determining charge transition process in memory devices. <i>Science China Materials</i> , 2021 , 64, 1713-1722	7.1	1	
597	Patterning organic semiconductor crystals for optoelectronics. <i>Applied Physics Letters</i> , 2021 , 119, 04050) 3 .4	2	
596	High Mobility Organic Lasing Semiconductor with Crystallization-Enhanced Emission for Light-Emitting Transistors. <i>Angewandte Chemie</i> , 2021 , 133, 20436-20441	3.6	1	
595	Ternary Conductance Switching Realized by a Pillar[5]arene-Functionalized Two-Dimensional Imine Polymer Film. <i>Chemistry - A European Journal</i> , 2021 , 27, 13605-13612	4.8	1	
594	High Mobility Organic Lasing Semiconductor with Crystallization-Enhanced Emission for Light-Emitting Transistors. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20274-20279	16.4	6	
593	Study of the Redox Potentials of Benzoquinone and Its Derivatives by Combining Electrochemistry and Computational Chemistry. <i>Journal of Chemical Education</i> , 2021 , 98, 3019-3025	2.4	2	
592	Organic Light-Emitting Transistors: Organic Light-Emitting Transistors Entering a New Development Stage (Adv. Mater. 31/2021). <i>Advanced Materials</i> , 2021 , 33, 2170245	24		
591	Organic Semiconductor Crystal Engineering for High-Resolution Layer-Controlled 2D Crystal Arrays. <i>Advanced Materials</i> , 2021 , e2104166	24	4	
590	Organic Semiconductor Single Crystals for X-ray Imaging. <i>Advanced Materials</i> , 2021 , 33, e2104749	24	14	
589	A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density. <i>EScience</i> , 2021 ,		15	
588	Photophysical tuning of small-molecule-doped organic crystals with long-persistent luminescence by variation of dopants. <i>Dyes and Pigments</i> , 2021 , 193, 109501	4.6	2	
587	Application of Triplet-Triplet Annihilation Upconversion in Organic Optoelectronic Devices: Advances and Perspectives. <i>Advanced Materials</i> , 2021 , 33, e2100704	24	15	
586	Preparation and assessment of reliable organic spin valves. <i>Organic Electronics</i> , 2021 , 99, 106311	3.5	2	

585	A general route towards two-dimensional organic crystal-based functional fibriform transistors for wearable electronic textiles. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 472-480	7.1	5
584	The effect of electron-withdrawing substituents in asymmetric anthracene derivative semiconductors. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 4217-4222	7.1	1
583	When graphene meets white graphene - recent advances in the construction of graphene and h-BN heterostructures. <i>Nanoscale</i> , 2021 , 13, 13174-13194	7.7	3
582	In situ observation of organic single micro-crystal fabrication by solvent vapor annealing. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 9124-9129	7.1	2
581	Low-fouling CNT-PEG-hydrogel coated quartz crystal microbalance sensor for saliva glucose detection <i>RSC Advances</i> , 2021 , 11, 22556-22564	3.7	1
580	Cornerstone of molecular spintronics: Strategies for reliable organic spin valves. <i>Nano Research</i> , 2021 , 14, 3653	10	4
579	Armadillo-inspired micro-foldable metal electrodes with a negligible resistance change under large stretchability. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 4046-4052	7.1	
578	Design of thermally activated delayed fluorescent emitters for organic solid-state microlasers. Journal of Materials Chemistry C, 2021 , 9, 7400-7406	7.1	5
577	Growing two-dimensional single crystals of organic semiconductors on liquid surfaces. <i>Applied Physics Letters</i> , 2021 , 119, 210501	3.4	1
576	Organic Cocrystals: Recent Advances and Perspectives for Electronic and Magnetic Applications <i>Frontiers in Chemistry</i> , 2021 , 9, 764628	5	4
575	Highly efficient modulation of the electronic properties of organic semiconductors by surface doping with 2D molecular crystals. <i>Science China Chemistry</i> , 2020 , 63, 973-979	7.9	3
574	Solution-Processed, Large-Area, Two-Dimensional Crystals of Organic Semiconductors for Field-Effect Transistors and Phototransistors. <i>ACS Central Science</i> , 2020 , 6, 636-652	16.8	30
573	One-Pot Domino Carbonylation Protocol for Aromatic Diimides toward n-Type Organic Semiconductors. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14024-14028	16.4	14
572	Continuous and highly ordered organic semiconductor thin films via dip-coating: the critical role of meniscus angle. <i>Science China Materials</i> , 2020 , 63, 1257-1264	7.1	5
571	One-Pot Domino Carbonylation Protocol for Aromatic Diimides toward n-Type Organic Semiconductors. <i>Angewandte Chemie</i> , 2020 , 132, 14128-14132	3.6	O
570	Molecular-scale integrated multi-functions for organic light-emitting transistors. <i>Nano Research</i> , 2020 , 13, 1976-1981	10	16
569	Stable Olympicenyl Radicals and Their Dimers. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11022-11031	16.4	22
568	Red-emissive poly(phenylene vinylene)-derivated semiconductors with well-balanced ambipolar electrical transporting properties. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 10868-10879	7.1	14

(2020-2020)

Challenges and Emerging Opportunities in High-Mobility and Low-Energy-Consumption Organic Field-Effect Transistors. <i>Advanced Energy Materials</i> , 2020 , 10, 2000955	21.8	24
Facile and cost-effective liver cancer diagnosis by water-gated organic field-effect transistors. <i>Biosensors and Bioelectronics</i> , 2020 , 164, 112251	11.8	19
Self-polarized Poly(vinylidene fluoride) Ultrathin Film and Its Piezo/Ferroelectric Properties. <i>ACS Applied Materials & Diezo</i> , 12, 29818-29825	9.5	5
Organic-Inorganic Hybrid Nanomaterials for Electrocatalytic CO Reduction. <i>Small</i> , 2020 , 16, e2001847	11	41
Organic Laser Molecule with High Mobility, High Photoluminescence Quantum Yield, and Deep-Blue Lasing Characteristics. <i>Journal of the American Chemical Society</i> , 2020 , 142, 6332-6339	16.4	53
A donor-acceptor type macrocycle: toward photolyzable self-assembly. <i>Chemical Communications</i> , 2020 , 56, 3939-3942	5.8	4
Two-Dimensional Conjugated Polymer Synthesized by Interfacial Suzuki Reaction: Towards Electronic Device Applications. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 9403-9407	16.4	35
Solution-Processed Polymeric Thin Film as the Transparent Electrode for Flexible Perovskite Solar Cells. <i>ACS Applied Materials & Description</i> (12, 15456-15463)	9.5	9
Two-Dimensional Conjugated Polymer Synthesized by Interfacial Suzuki Reaction: Towards Electronic Device Applications. <i>Angewandte Chemie</i> , 2020 , 132, 9489-9493	3.6	4
Epitaxial Growth of Nanorod Meshes from Luminescent Organic Cocrystals via Crystal Transformation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 7265-7269	16.4	19
Recent Advances in Atomic-Level Engineering of Nanostructured Catalysts for Electrochemical CO2 Reduction. <i>Advanced Functional Materials</i> , 2020 , 30, 1910534	15.6	55
Rational Control of Charge Transfer Excitons Toward High-Contrast Reversible Mechanoresponsive Luminescent Switching. <i>Angewandte Chemie</i> , 2020 , 132, 17733-17739	3.6	9
High-mobility organic single-crystalline transistors with anisotropic transport based on high symmetrical 册码haped heteroarene derivatives. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 11477-11484	7.1	3
Rational Control of Charge Transfer Excitons Toward High-Contrast Reversible Mechanoresponsive Luminescent Switching. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17580-17586	16.4	36
Template-Assisted Electrochemical Deposition for Organic and Hybrid Nanowire Electronics. <i>Advanced Optical Materials</i> , 2020 , 8, 2000866	8.1	4
Synergistic Resistance Modulation toward Ultrahighly Sensitive Piezoresistive Pressure Sensors. <i>Advanced Materials Technologies</i> , 2020 , 5, 1901084	6.8	13
Synthesis of large-area ultrathin graphdiyne films at an airWater interface and their application in memristors. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 1268-1273	7.8	12
Bulk Chiral Halide Perovskite Single Crystals for Active Circular Dichroism and Circularly Polarized Luminescence. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 1689-1696	6.4	40
	Field-Effect Transistors. Advanced Energy Materials, 2020, 10, 2000955 Facile and cost-effective liver cancer diagnosis by water-gated organic field-effect transistors. Biosensors and Bioelectronics, 2020, 164, 112251 Self-polarized Poly(vinylidene fluoride) Ultrathin Film and Its Piezo/Ferroelectric Properties. ACS Applied Materials & Deptition of Comments of Properties and Properties. ACS Applied Materials & Deptition of Comments of Properties. ACS Applied Materials & Deptition of Properties. Acs Applied Materials & Deptition of Properties. Acs Applied Materials & Deptition of Properties. Angewandte Chemie - International Edition, 2020, 59, 9403-9407 Solution-Processed Polymeric Thin Film as the Transparent Electrode for Flexible Perovskite Solar Cells. ACS Applied Materials & Deptition of Properties. Acs Applied Materials & Deptition of Properties. Acs Applied Materials & Deptition of Properties. Applied Materials of Properties Applied Materials of Properties Applied Materials Applied Applied Materials Applied Applied Materials Applied Applied	Field-Effect Transistors. Advanced Energy Materials, 2020, 10, 2000955 Facile and cost-effective liver cancer diagnosis by water-gated organic field-effect transistors. Biosensors and Bioelectronics, 2020, 164, 112251 Self-polarized Poly(vinylidene fluoride) Ultrathin Film and its Piezo/Ferroelectric Properties. ACS Applied Materials & Depois Properties. Acts Acts Applied Materials & Depois Properties. Acts Acts Applied Materials & Depois Properties. Acts Acts Acts Acts Acts Acts Acts Acts

549	Toward Stable Lithium Plating/Stripping by Successive Desolvation and Exclusive Transport of Li Ions. <i>ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Des</i>	9.5	27
548	Solution-Processed Centimeter-Scale Highly Aligned Organic Crystalline Arrays for High-Performance Organic Field-Effect Transistors. <i>Advanced Materials</i> , 2020 , 32, e1908388	24	62
547	A new fluorescent quinoline derivative toward the acid-responsivity in both solution and solid states. <i>Chinese Chemical Letters</i> , 2020 , 31, 2909-2912	8.1	12
546	Fine-Tuning Intrinsic Strain in Penta-Twinned PttuMn Nanoframes Boosts Oxygen Reduction Catalysis. <i>Advanced Functional Materials</i> , 2020 , 30, 1910107	15.6	52
545	Preparing two-dimensional crystalline conjugated polymer films by synergetic polymerization and self-assembly at air/water interface. <i>Polymer Chemistry</i> , 2020 , 11, 1572-1579	4.9	5
544	Monolayer Two-dimensional Molecular Crystals for an Ultrasensitive OFET-based Chemical Sensor. <i>Angewandte Chemie</i> , 2020 , 132, 4410-4414	3.6	5
543	Stimuli-responsive behaviors of organic charge transfer cocrystals: recent advances and perspectives. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 715-728	7.8	46
542	Monolayer Two-dimensional Molecular Crystals for an Ultrasensitive OFET-based Chemical Sensor. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 4380-4384	16.4	57
541	Organic Small Molecule Activates Transition Metal Foam for Efficient Oxygen Evolution Reaction. <i>Advanced Materials</i> , 2020 , 32, e1906015	24	27
540	Aggregation-Dependent Photoreactive Hemicyanine Assembly as a Photobactericide. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 22552-22559	9.5	4
539	Systematic Modulation of Charge Transport in Molecular Devices through Facile Control of Molecule-Electrode Coupling Using a Double Self-Assembled Monolayer Nanowire Junction. <i>Journal of the American Chemical Society</i> , 2020 , 142, 9708-9717	16.4	12
538	Effect of functional groups on microporous polymer based resistance switching memory devices. <i>Chemical Communications</i> , 2020 , 56, 6356-6359	5.8	3
537	Atomically Thin Catalysts: Recent Advances in Atomic-Level Engineering of Nanostructured Catalysts for Electrochemical CO2 Reduction (Adv. Funct. Mater. 17/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070107	15.6	1
536	Synthesis and Property Study of Field-effect Emissive Conjugated Polymers Based on Styrene and Benzothiadiazole. <i>Acta Chimica Sinica</i> , 2020 , 78, 945	3.3	6
535	Control of molecular packing toward a lateral microresonator for microlaser array. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 8531-8537	7.1	3
534	Highly Efficient Charge Transport in a Quasi-Monolayer Semiconductor on Pure Polymer Dielectric. <i>Advanced Functional Materials</i> , 2020 , 30, 1907153	15.6	7
533	2D Semiconducting Metal®rganic Framework Thin Films for Organic Spin Valves. <i>Angewandte Chemie</i> , 2020 , 132, 1134-1139	3.6	25
532	2D Semiconducting Metal-Organic Framework Thin Films for Organic Spin Valves. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1118-1123	16.4	90

(2020-2020)

531	Surface-grafting polymers: from chemistry to organic electronics. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 692-714	7.8	42
530	Efficient Construction of Highly-fused Diperylene Bismides by Cu/Oxalic Diamide-promoted Zipper-mode Double C-H Activation. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 110-114	2.2	1
529	DFT Mechanistic Account for the Site Selectivity of Electron-Rich C(sp)-H Bond in the Manganese-Catalyzed Aminations. <i>Organic Letters</i> , 2020 , 22, 453-457	6.2	15
528	Organic photodiodes and phototransistors toward infrared detection: materials, devices, and applications. <i>Chemical Society Reviews</i> , 2020 , 49, 653-670	58.5	113
527	Controllable Synthesis of Hollow Multishell Structured Co3O4 with Improved Rate Performance and Cyclic Stability for Supercapacitors. <i>Chemical Research in Chinese Universities</i> , 2020 , 36, 68-73	2.2	39
526	Ultrathin Pd-based nanosheets: syntheses, properties and applications. <i>Nanoscale</i> , 2020 , 12, 4219-4237	7.7	28
525	Application of organicgraphene hybrids in high performance photodetectors. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 354-368	7.8	9
524	Relieving the Photosensitivity of Organic Field-Effect Transistors. <i>Advanced Materials</i> , 2020 , 32, e19061	2:24	34
523	High-mobility thienothiophene integrating strong emission and high photoresponsivity for multifunctional optoelectronic applications. <i>Organic Electronics</i> , 2020 , 87, 105941	3.5	4
522	High-resolution organic field-effect transistors manufactured by electrohydrodynamic inkjet printing of doped electrodes. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15219-15223	7.1	9
521	Enhanced ambipolar charge transport for efficient organic single crystal light-emitting transistors with a narrowed ambipolar regime. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 16333-16338	7.1	3
520	Organic Field-Effect Transistors: Challenges and Emerging Opportunities in High-Mobility and Low-Energy-Consumption Organic Field-Effect Transistors (Adv. Energy Mater. 29/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070126	21.8	1
519	Polymer mask-weakening grain-boundary effect: towards high-performance organic thin-film transistors with mobility closing to 20 cm2 VII sII. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 2990-2994	7.8	4
518	Layered Perovskite (CHNH)Pb(SCN)I Single Crystals: Phase Transition and Moisture Stability. <i>ACS Applied Materials & Applied & Applied Materials & Applied &</i>	9.5	11
517	High-performance amorphous organic semiconductor-based vertical field-effect transistors and light-emitting transistors. <i>Nanoscale</i> , 2020 , 12, 18371-18378	7.7	14
516	Highly adhesive, washable and stretchable on-skin electrodes based on polydopamine and silk fibroin for ambulatory electrocardiography sensing. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 12257-12	2764	10
515	Model Study on the Ideal Currentl/oltage Characteristics and Rectification Performance of a Molecular Rectifier under Single-Level-Based Tunneling and Hopping Transport. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 24408-24419	3.8	1
514	Substitution site effect of naphthyl substituted anthracene derivatives and their applications in organic optoelectronics. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 15597-15602	7.1	0

513	A Low-Temperature Solution-Process High-k Dielectric for High-Performance Flexible Organic Field-Effect Transistors. <i>Frontiers in Materials</i> , 2020 , 7,	4	5
512	Molecular doped organic semiconductor crystals for optoelectronic device applications. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 14996-15008	7.1	11
511	The effect of thickness on the optoelectronic properties of organic field-effect transistors: towards molecular crystals at monolayer limit. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 13154-13168	7.1	18
510	Das Aufkommen der organischen Einkristallelektronik. <i>Angewandte Chemie</i> , 2020 , 132, 1424-1445	3.6	10
509	The Emergence of Organic Single-Crystal Electronics. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 1408-1428	16.4	98
508	The analysis of charge transport mechanism in molecular junctions based on current-voltage characteristics. <i>Chemical Physics</i> , 2020 , 528, 110514	2.3	6
507	Recent Progress in Organic Phototransistors: Semiconductor Materials, Device Structures and Optoelectronic Applications. <i>ChemPhotoChem</i> , 2020 , 4, 9-38	3.3	25
506	Two-dimensional organic single-crystalline p-n junctions for ambipolar field transistors. <i>Science China Materials</i> , 2020 , 63, 122-127	7.1	10
505	Two-dimensional conjugated polymers synthesized via on-surface chemistry. <i>Science China Materials</i> , 2020 , 63, 172-176	7.1	5
504	All-covalently-implanted FETs with ultrahigh solvent resistibility and exceptional electrical stability, and their applications for liver cancer biomarker detection. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 7436-7446	7.1	7
503	A Transfer Method for High-Mobility, Bias-Stable, and Flexible Organic Field-Effect Transistors. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000169	6.8	7
502	Organic Single Crystals: A P hase Separation[Molecular Design Strategy Towards Large-Area 2D Molecular Crystals (Adv. Mater. 35/2019). <i>Advanced Materials</i> , 2019 , 31, 1970251	24	1
501	Enhanced optomechanical properties of mechanochemiluminescent poly(methyl acrylate) composites with granulated fluorescent conjugated microporous polymer fillers. <i>Chemical Science</i> , 2019 , 10, 2206-2211	9.4	28
500	Room-temperature-processed fullerene single-crystalline nanoparticles for high-performance flexible perovskite photovoltaics. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 1509-1518	13	19
499	Cyclohexyl-Substituted Anthracene Derivatives for High Thermal Stability Organic Semiconductors. <i>Frontiers in Chemistry</i> , 2019 , 7, 11	5	11
498	Mesopolymer synthesis by ligand-modulated direct arylation polycondensation towards n-type and ambipolar conjugated systems. <i>Nature Chemistry</i> , 2019 , 11, 271-277	17.6	67
497	Monolayer organic field-effect transistors. Science China Chemistry, 2019 , 62, 313-330	7.9	42
496	Organic crystalline materials in flexible electronics. <i>Chemical Society Reviews</i> , 2019 , 48, 1492-1530	58.5	202

(2019-2019)

495	cathode: efficient mineralization in a heterogeneous electro-Fenton-like process. <i>Environmental Science: Nano</i> , 2019 , 6, 661-671	7.1	20
494	Small-Molecule-Doped Organic Crystals with Long-Persistent Luminescence. <i>Advanced Functional Materials</i> , 2019 , 29, 1902503	15.6	50
493	Airflow Sensors: Extremely Sensitive, Allochroic Airflow Sensors by Synergistic Effect of Reversible Water Molecules Adsorption and Tunable Interlayer Distance in Graphene Oxide Film (Adv. Mater. Interfaces 9/2019). <i>Advanced Materials Interfaces</i> , 2019 , 6, 1970059	4.6	
492	Solar Thermal Storage and Room-Temperature Fast Release Using a Uniform Flexible Azobenzene-Grafted Polynorborene Film Enhanced by Stretching. <i>Macromolecules</i> , 2019 , 52, 4222-4231	5.5	20
491	Conjugated polymer crystals via topochemical polymerization. Science China Chemistry, 2019, 62, 1271-	172.75/4	11
490	Thermal-assisted self-assembly: a self-adaptive strategy towards large-area uniaxial organic single-crystalline microribbon arrays. <i>Nanoscale</i> , 2019 , 11, 12781-12787	7.7	10
489	Carbogenic Nanozyme with Ultrahigh Reactive Nitrogen Species Selectivity for Traumatic Brain Injury. <i>Nano Letters</i> , 2019 , 19, 4527-4534	11.5	71
488	Diphenylene-Tetracyanoquinodimethane Cocrystals as Stable Organic Rectifiers. <i>ChemPlusChem</i> , 2019 , 84, 1245-1248	2.8	3
487	Two-Pathway Viewpoint to Interpret Quantum Interference in Molecules Containing Five-Membered Heterocycles: Thienoacenes as Examples. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 15977-15984	3.8	1
486	A Robust Nonvolatile Resistive Memory Device Based on a Freestanding Ultrathin 2D Imine Polymer Film. <i>Advanced Materials</i> , 2019 , 31, e1902264	24	72
485	Thermally Activated Delayed Fluorescence in an Organic Cocrystal: Narrowing the Singlet-Triplet Energy Gap via Charge Transfer. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 11311-11316	16.4	40
484	Thermally Activated Delayed Fluorescence in an Organic Cocrystal: Narrowing the Singlet riplet Energy Gap via Charge Transfer. <i>Angewandte Chemie</i> , 2019 , 131, 11433	3.6	
483	Phenanthrene derivatives combined charge transport properties and strong solid-state emission. <i>Science China Chemistry</i> , 2019 , 62, 916-920	7.9	2
482	Efficient perovskite solar cells by hybrid perovskites incorporated with heterovalent neodymium cations. <i>Nano Energy</i> , 2019 , 61, 352-360	17.1	53
481	Scalable Fabrication of Highly Crystalline Organic Semiconductor Thin Film by Channel-Restricted Screen Printing toward the Low-Cost Fabrication of High-Performance Transistor Arrays. <i>Advanced Materials</i> , 2019 , 31, e1807975	24	59
480	High-performance optical memory transistors based on a novel organic semiconductor with nanosprouts. <i>Nanoscale</i> , 2019 , 11, 7117-7122	7.7	14
479	Extremely Sensitive, Allochroic Airflow Sensors by Synergistic Effect of Reversible Water Molecules Adsorption and Tunable Interlayer Distance in Graphene Oxide Film. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1900365	4.6	3
478	The odd even effect of alkyl chain in organic room temperature phosphorescence luminogens and the corresponding in vivo imaging. <i>Materials Chemistry Frontiers</i> , 2019 , 3, 1391-1397	7.8	50

477	A case study of tuning the crystal polymorphs of organic semiconductors towards simultaneously improved light emission and field-effect properties. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 5925-593	30 ^{7.1}	14
476	Recent Progress in Aromatic Polyimide Dielectrics for Organic Electronic Devices and Circuits. <i>Advanced Materials</i> , 2019 , 31, e1806070	24	85
475	Construction of Large-Area Ultrathin Conductive Metal-Organic Framework Films through Vapor-Induced Conversion. <i>Small</i> , 2019 , 15, e1804845	11	20
474	Heterogeneous electrocatalytic degradation of ciprofloxacin by ternary Ce3ZrFe4O14-x/CF composite cathode. <i>Catalysis Today</i> , 2019 , 327, 116-125	5.3	12
473	Channel-restricted meniscus self-assembly for uniformly aligned growth of single-crystal arrays of organic semiconductors. <i>Materials Today</i> , 2019 , 24, 17-25	21.8	75
472	Layer-Defining Strategy to Grow Two-Dimensional Molecular Crystals on a Liquid Surface down to the Monolayer Limit. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 16082-16086	16.4	31
471	Capacitive conjugated ladder polymers for fast-charge and -discharge sodium-ion batteries and hybrid supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20891-20898	13	33
470	A novel Fe-free photo-electro-Fenton-like system for enhanced ciprofloxacin degradation: bifunctional Z-scheme WO3/g-C3N4. <i>Environmental Science: Nano</i> , 2019 , 6, 2850-2862	7.1	20
469	High-Efficiency Single-Component Organic Light-Emitting Transistors. <i>Advanced Materials</i> , 2019 , 31, e1	9 <u>0</u> 3417	5 72
468	A One-Dimensional Ed Conjugated Coordination Polymer for Sodium Storage with Catalytic Activity in Negishi Coupling. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14731-14739	16.4	81
467	Trisulfide-Bond Acenes for Organic Batteries. <i>Angewandte Chemie</i> , 2019 , 131, 13647-13655	3.6	6
466	Trisulfide-Bond Acenes for Organic Batteries. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 135	13-61.745	219
465	Cocrystal Engineering: A Collaborative Strategy toward Functional Materials. <i>Advanced Materials</i> , 2019 , 31, e1902328	24	133
464	Organic Single-Crystal Spintronics: Magnetoresistance Devices with High Magnetic-Field Sensitivity. <i>ACS Nano</i> , 2019 , 13, 9491-9497	16.7	10
463	A new type of solid-state luminescent 2-phenylbenzo[g]furo[2,3-b]quinoxaline derivative: synthesis, photophysical characterization and transporting properties. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 9690-9697	7.1	10
462	Highly Efficient Degradation of Polyacrylamide by an Fe-Doped CeZrO Solid Solution/CF Composite Cathode in a Heterogeneous Electro-Fenton Process. <i>ACS Applied Materials & Composite</i> 11, 30703-30712	9.5	12
461	2D Molecular Crystal Bilayer p-n Junctions: A General Route toward High-Performance and Well-Balanced Ambipolar Organic Field-Effect Transistors. <i>Small</i> , 2019 , 15, e1902187	11	21
460	A "Phase Separation" Molecular Design Strategy Towards Large-Area 2D Molecular Crystals. <i>Advanced Materials</i> , 2019 , 31, e1901437	24	26

459	Transmission mechanism and quantum interference in fused thienoacenes coupling to Au electrodes through the thiophene rings. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 16293-16301	3.6	1
458	Crystal Engineering of Organic Optoelectronic Materials. <i>CheM</i> , 2019 , 5, 2814-2853	16.2	71
457	Efficient Perovskite Solar Cells through Suppressed Nonradiative Charge Carrier Recombination by a Processing Additive. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 40163-40171	9.5	9
456	Organic Light-Emitting Transistors: High-Efficiency Single-Component Organic Light-Emitting Transistors (Adv. Mater. 37/2019). <i>Advanced Materials</i> , 2019 , 31, 1970266	24	
455	Layer-Defining Strategy to Grow Two-Dimensional Molecular Crystals on a Liquid Surface down to the Monolayer Limit. <i>Angewandte Chemie</i> , 2019 , 131, 16228-16232	3.6	2
454	InnenrEktitelbild: Layer-Defining Strategy to Grow Two-Dimensional Molecular Crystals on a Liquid Surface down to the Monolayer Limit (Angew. Chem. 45/2019). <i>Angewandte Chemie</i> , 2019 , 131, 16479-16479	3.6	
453	Tuning Rectification Properties of Molecular Electronic Devices by Mixed Monolayer. <i>Acta Chimica Sinica</i> , 2019 , 77, 1031	3.3	4
452	Persistent organic room temperature phosphorescence: what is the role of molecular dimers?. <i>Chemical Science</i> , 2019 , 11, 833-838	9.4	67
451	Vertical Organic Field-Effect Transistors. Advanced Functional Materials, 2019, 29, 1808453	15.6	38
450	Realizing low-voltage operating crystalline monolayer organic field-effect transistors with a low contact resistance. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 3436-3442	7.1	21
449	Eu-based coordination polymer microrods for low-loss optical waveguiding application. <i>Nanoscale</i> , 2019 , 11, 21061-21067	7.7	1
448	Tunable oligo-histidine self-assembled monolayer junction and charge transport by a pH modulated assembly. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 26058-26065	3.6	3
447	Enhanced catalytic degradation by using RGO-Ce/WO nanosheets modified CF as electro-Fenton cathode: Influence factors, reaction mechanism and pathways. <i>Journal of Hazardous Materials</i> , 2019 , 367, 365-374	12.8	46
446	Band-like transport in small-molecule thin films toward high mobility and ultrahigh detectivity phototransistor arrays. <i>Nature Communications</i> , 2019 , 10, 12	17.4	107
445	Negative transconductance in multi-layer organic thin-film transistors. <i>Nanotechnology</i> , 2019 , 30, 02LT0	03.4	5
444	Fast Deposition of Aligning Edge-On Polymers for High-Mobility Ambipolar Transistors. <i>Advanced Materials</i> , 2019 , 31, e1805761	24	48
443	Organic single-crystal phototransistor with unique wavelength-detection characteristics. <i>Science China Materials</i> , 2019 , 62, 729-735	7.1	15
442	Carbon nanotubes assisting interchain charge transport in semiconducting polymer thin films towards much improved charge carrier mobility. <i>Science China Materials</i> , 2019 , 62, 813-822	7.1	6

441	Ambipolar Conjugated Polymers with Ultrahigh Balanced Hole and Electron Mobility for Printed Organic Complementary Logic via a Two-Step C?H Activation Strategy. <i>Advanced Materials</i> , 2019 , 31, e1806010	24	43
440	A new asymmetric anthracene derivative with high mobility. Science China Chemistry, 2019, 62, 251-255	7.9	8
439	Anisotropic Magnetoresistance in NiFe-Based Polymer Spin Valves. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 11654-11659	9.5	8
438	Tuning photophysical properties via alkoxyl groups in charge-separated triphenylamine sensitizers for dye-sensitized solar cells. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2019 , 368, 233-2	44 ⁷	7
437	The Semiconductor/Conductor Interface Piezoresistive Effect in an Organic Transistor for Highly Sensitive Pressure Sensors. <i>Advanced Materials</i> , 2019 , 31, e1805630	24	63
436	Amplified Spontaneous Emission Based on 2D Ruddlesden Popper Perovskites. <i>Advanced Functional Materials</i> , 2018 , 28, 1707006	15.6	88
435	Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of Metal-Organic Frameworks, Metal Nanoparticles, and Micro- and Mesoporous Polymers. Angewandte Chemie - International Edition, 2018, 57, 5708-5713	16.4	108
434	Low-Voltage Organic Single-Crystal Field-Effect Transistor with Steep Subthreshold Slope. <i>ACS Applied Materials & Applied & Applied Materials & Applied & A</i>	9.5	31
433	N-Type 2D Organic Single Crystals for High-Performance Organic Field-Effect Transistors and Near-Infrared Phototransistors. <i>Advanced Materials</i> , 2018 , 30, e1706260	24	119
432	Space-Confined Strategy toward Large-Area Two-Dimensional Single Crystals of Molecular Materials. <i>Journal of the American Chemical Society</i> , 2018 , 140, 5339-5342	16.4	101
431	Structure engineering: extending the length of azaacene derivatives through quinone bridges. Journal of Materials Chemistry C, 2018 , 6, 3628-3633	7.1	9
430	Organic Single Crystals: N-Type 2D Organic Single Crystals for High-Performance Organic Field-Effect Transistors and Near-Infrared Phototransistors (Adv. Mater. 16/2018). <i>Advanced Materials</i> , 2018 , 30, 1870114	24	5
429	Effective and Selective Catalysts for Cinnamaldehyde Hydrogenation: Hydrophobic Hybrids of Metal Drganic Frameworks, Metal Nanoparticles, and Micro- and Mesoporous Polymers. <i>Angewandte Chemie</i> , 2018 , 130, 5810-5815	3.6	27
428	Cocrystals Strategy towards Materials for Near-Infrared Photothermal Conversion and Imaging. <i>Angewandte Chemie</i> , 2018 , 130, 4027-4031	3.6	32
427	From Linear to Angular Isomers: Achieving Tunable Charge Transport in Single-Crystal Indolocarbazoles Through Delicate Synergetic CH/NH???Interactions. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8875-8880	16.4	31
426	Controllable growth of C8-BTBT single crystalline microribbon arrays by a limited solvent vapor-assisted crystallization (LSVC) method. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 2419-2423	7.1	29
425	Efficient Perovskite Solar Cells Fabricated by Co Partially Substituted Hybrid Perovskite. <i>Advanced Energy Materials</i> , 2018 , 8, 1703178	21.8	88
424	Solution-Processable Balanced Ambipolar Field-Effect Transistors Based on Carbonyl-Regulated Copolymers. <i>Chemistry - an Asian Journal</i> , 2018 , 13, 846-852	4.5	2

423	Quinoline-Flanked Diketopyrrolopyrrole Copolymers Breaking through Electron Mobility over 6 cm V s in Flexible Thin Film Devices. <i>Advanced Materials</i> , 2018 , 30, 1704843	24	73
422	Cocrystals Strategy towards Materials for Near-Infrared Photothermal Conversion and Imaging. Angewandte Chemie - International Edition, 2018, 57, 3963-3967	16.4	143
421	Microwave-Assisted Regeneration of Single-Walled Carbon Nanotubes from Carbon Fragments. <i>Small</i> , 2018 , 14, e1800033	11	18
420	Surface-Confined Dynamic Covalent System Driven by Olefin Metathesis. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 1869-1873	16.4	19
419	Organic Optoelectronics: 2D Organic Materials for Optoelectronic Applications (Adv. Mater. 2/2018). <i>Advanced Materials</i> , 2018 , 30, 1870012	24	8
418	Hollow Spherical Nanoshell Arrays of 2D Layered Semiconductor for High-Performance Photodetector Device. <i>Advanced Functional Materials</i> , 2018 , 28, 1705153	15.6	39
417	Highly transparent, strong, and flexible fluorographene/fluorinated polyimide nanocomposite films with low dielectric constant. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6378-6384	7.1	62
416	From Linear to Angular Isomers: Achieving Tunable Charge Transport in Single-Crystal Indolocarbazoles Through Delicate Synergetic CH/NH???Interactions. <i>Angewandte Chemie</i> , 2018 , 130, 9013-9018	3.6	11
415	High performance organic transistors and phototransistors based on diketopyrrolopyrrole-quaterthiophene copolymer thin films fabricated via low-concentration solution processing. <i>Chinese Chemical Letters</i> , 2018 , 29, 1675-1680	8.1	17
414	A new organic compound of 2-(2,2-diphenylethenyl)anthracene (DPEA) showing simultaneous electrical charge transport property and AIE optical characteristics. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3856-3860	7.1	22
413	Solvatomechanical Bending of Organic Charge Transfer Cocrystal. <i>Journal of the American Chemical Society</i> , 2018 , 140, 6186-6189	16.4	63
412	Ultrathin silica film derived with ultraviolet irradiation of perhydropolysilazane for high performance and low voltage organic transistor and inverter. <i>Science China Materials</i> , 2018 , 61, 1237-12	72 ¹	5
411	2D Organic Materials for Optoelectronic Applications. <i>Advanced Materials</i> , 2018 , 30, 1702415	24	201
410	Organic Semiconductor Single Crystals for Electronics and Photonics. <i>Advanced Materials</i> , 2018 , 30, e186	<u>ол</u> р48	211
409	Integrating Efficient Optical Gain in High-Mobility Organic Semiconductors for Multifunctional Optoelectronic Applications. <i>Advanced Functional Materials</i> , 2018 , 28, 1802454	15.6	29
408	Bottom-up growth of n-type monolayer molecular crystals on polymeric substrate for optoelectronic device applications. <i>Nature Communications</i> , 2018 , 9, 2933	17.4	88
407	Charge-separated sensitizers with enhanced intramolecular charge transfer for dye-sensitized solar cells: Insight from structure-performance relationship. <i>Organic Electronics</i> , 2018 , 61, 35-45	3.5	12
406	Organic Field-Effect Transistor for Energy-Related Applications: Low-Power-Consumption Devices, Near-Infrared Phototransistors, and Organic Thermoelectric Devices. <i>Advanced Energy Materials</i> , 2018 8 1801003	21.8	73

405	Enhanced Visible-Light-Driven Hydrogen Production of Carbon Nitride by Band Structure Tuning. Journal of Physical Chemistry C, 2018 , 122, 17261-17267	3.8	20
404	How Does PalladiumAmino Acid Cooperative Catalysis Enable Regio- and Stereoselective C(sp3)H Functionalization in Aldehydes and Ketones? A DFT Mechanistic Study. <i>ACS Catalysis</i> , 2018 , 8, 7698-770	9 ^{13.1}	33
403	Cyclodextrin functionalized reduced graphene oxide for electrochemical chiral differentiation of tartaric acid. <i>Analytical Methods</i> , 2018 , 10, 3660-3665	3.2	8
402	Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 2237-2243	5.8	15
401	Click Access to a Cyclodextrin-Based Spatially Confined AIE Material for Hydrogenase Recognition. <i>Sensors</i> , 2018 , 18,	3.8	2
400	InnenrEktitelbild: From Linear to Angular Isomers: Achieving Tunable Charge Transport in Single-Crystal Indolocarbazoles Through Delicate Synergetic CH/NH???Interactions (Angew. Chem. 29/2018). <i>Angewandte Chemie</i> , 2018 , 130, 9327-9327	3.6	
399	Hole Mobility Modulation in Single-Crystal Metal Phthalocyanines by Changing the Metal-四 Interactions. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 10112-10117	16.4	30
398	Molecular cocrystals: design, charge-transfer and optoelectronic functionality. <i>Physical Chemistry Chemical Physics</i> , 2018 , 20, 6009-6023	3.6	109
397	Organic Field-Effect Transistors: Triple Acceptors in a Polymeric Architecture for Balanced Ambipolar Transistors and High-Gain Inverters (Adv. Mater. 32/2018). <i>Advanced Materials</i> , 2018 , 30, 187	′0 21 41	
396	Fluorescence of Nonaromatic Organic Systems and Room Temperature Phosphorescence of Organic Luminogens: The Intrinsic Principle and Recent Progress. <i>Small</i> , 2018 , 14, e1801560	11	172
395	Copolymer dielectrics with balanced chain-packing density and surface polarity for high-performance flexible organic electronics. <i>Nature Communications</i> , 2018 , 9, 2339	17.4	52
394	Two-Dimensional High-Quality Monolayered Triangular WS Flakes for Field-Effect Transistors. <i>ACS Applied Materials & Discourse (Materials & Discours)</i> 10, 22435-22444	9.5	46
393	Organic semiconductor crystals. Chemical Society Reviews, 2018, 47, 422-500	58.5	429
392	Room-Temperature-Operated Ultrasensitive Broadband Photodetectors by Perovskite Incorporated with Conjugated Polymer and Single-Wall Carbon Nanotubes. <i>Advanced Functional Materials</i> , 2018 , 28, 1705541	15.6	51
391	Tuning of the degree of charge transfer and the electronic properties in organic binary compounds by crystal engineering: a perspective. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 1884-1902	7.1	110
390	Acid-Responsive Conductive Nanofiber of Tetrabenzoporphyrin Made by Solution Processing. <i>Journal of the American Chemical Society</i> , 2018 , 140, 62-65	16.4	21
389	Organic single-crystalline transistors based on Benzo[b]thiophen-Benzo[b]furan analogues with contorted configuration. <i>Organic Electronics</i> , 2018 , 53, 57-65	3.5	7
388	Selective sorting of metallic/semiconducting single-walled carbon nanotube arrays by		

(2018-2018)

387	n-Type conjugated polymers based on 3,3?-dicyano-2,2?-bithiophene: synthesis and semiconducting properties. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12896-12903	7.1	15
386	Unidirectional and crystalline organic semiconductor microwire arrays by solvent vapor annealing with PMMA as the assisting layer. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12479-12483	7.1	10
385	Smartly designed AIE triazoliums as unique targeting fluorescence tags for sulfonic biomacromolecule recognition via Blectrostatic locking Journal of Materials Chemistry C, 2018, 6, 1252	9-7 12 53	6 ⁸
384	Deposition rate related DPA OFET threshold voltage shift and hysteresis variation. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 12498-12502	7.1	3
383	Reliable Spin Valves of Conjugated Polymer Based on Mechanically Transferrable Top Electrodes. <i>ACS Nano</i> , 2018 , 12, 12657-12664	16.7	23
382	Organic field-effect optical waveguides. <i>Nature Communications</i> , 2018 , 9, 4790	17.4	54
381	Neuromorphic Devices: A Ferroelectric/Electrochemical Modulated Organic Synapse for Ultraflexible, Artificial Visual-Perception System (Adv. Mater. 46/2018). <i>Advanced Materials</i> , 2018 , 30, 1870349	24	5
380	New anthracene derivatives integrating high mobility and strong emission. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 13257-13260	7.1	6
379	Constructing Universal Ionic Sieves via Alignment of Two-Dimensional Covalent Organic Frameworks (COFs). <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16072-16076	16.4	81
378	A Ferroelectric/Electrochemical Modulated Organic Synapse for Ultraflexible, Artificial Visual-Perception System. <i>Advanced Materials</i> , 2018 , 30, e1803961	24	191
377	Electrochemical polymerization for two-dimensional conjugated polymers. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10672-10686	7.1	29
376	Donor Acceptor Conjugated Polymers Based on Bisisoindigo: Energy Level Modulation toward Unipolar n-Type Semiconductors. <i>Macromolecules</i> , 2018 , 51, 8652-8661	5.5	27
375	Organic-Single-Crystal Vertical Field-Effect Transistors and Phototransistors. <i>Advanced Materials</i> , 2018 , 30, e1803655	24	34
374	2,7-Dioctylbenzofuro[3,2-b]benzofuran: An Organic Semiconductor with Two-dimensional Transport Channels. <i>Asian Journal of Organic Chemistry</i> , 2018 , 7, 2228-2232	3	12
373	Fullerene-derivative as interlayer for high performance organic thin-film transistors. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 6052-6057	7.1	5
372	Hole Mobility Modulation in Single-Crystal Metal Phthalocyanines by Changing the Metal如 Interactions. <i>Angewandte Chemie</i> , 2018 , 130, 10269-10274	3.6	7
371	Substrate Effects in the Supramolecular Self-Assembly of 2,4,6-Tris(4-bromophenyl)-1,3,5-triazine on Graphite and Graphene. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 12307-12314	3.8	9
370	Presence of Short Intermolecular Contacts Screens for Kinetic Stability in Packing Polymorphs. Journal of the American Chemical Society, 2018, 140, 7519-7525	16.4	21

369	Separation of Arylenevinylene Macrocycles with a Surface-Confined Two-Dimensional Covalent Organic Framework. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8984-8988	16.4	34
368	Separation of Arylenevinylene Macrocycles with a Surface-Confined Two-Dimensional Covalent Organic Framework. <i>Angewandte Chemie</i> , 2018 , 130, 9122-9126	3.6	1
367	Free-Standing 2D Hexagonal Aluminum Nitride Dielectric Crystals for High-Performance Organic Field-Effect Transistors. <i>Advanced Materials</i> , 2018 , 30, e1801891	24	20
366	Triple Acceptors in a Polymeric Architecture for Balanced Ambipolar Transistors and High-Gain Inverters. <i>Advanced Materials</i> , 2018 , 30, e1801951	24	22
365	An Asymmetric Furan/Thieno[3,2-b]Thiophene Diketopyrrolopyrrole Building Block for Annealing-Free Green-Solvent Processable Organic Thin-Film Transistors. <i>Macromolecular Rapid Communications</i> , 2018 , 39, e1800225	4.8	20
364	A novel angularly fused bistetracene: facile synthesis, crystal packing and single-crystal field effect transistors. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 1308-1312	7.1	22
363	Surface Polarity and Self-Structured Nanogrooves Collaboratively Oriented Molecular Packing for High Crystallinity toward Efficient Charge Transport. <i>Journal of the American Chemical Society</i> , 2017 , 139, 2734-2740	16.4	57
362	Controlled formation of large-area single-crystalline TIPS-pentacene arrays through superhydrophobic micropillar flow-coating. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2702-2707	7.1	20
361	Enhancing field-effect mobility and maintaining solid-state emission by incorporating 2,6-diphenyl substitution to 9,10-bis(phenylethynyl)anthracene. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 2519-2523	7.1	19
360	Field-Effect Devices: Molecular Crystal Engineering: Tuning Organic Semiconductor from p-type to n-type by Adjusting Their Substitutional Symmetry (Adv. Mater. 10/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1
359	Few-Layer Graphdiyne Nanosheets Applied for Multiplexed Real-Time DNA Detection. <i>Advanced Materials</i> , 2017 , 29, 1606755	24	153
358	Electrocatalysts: Ternary NiCo2Px Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction (Adv. Mater. 9/2017). <i>Advanced Materials</i> , 2017 , 29,	24	4
357	Enhanced Internal Quantum Efficiency in Dye-Sensitized Solar Cells: Effect of Long-Lived Charge-Separated State of Sensitizers. <i>ACS Applied Materials & Company Compa</i>	9.5	19
356	Shape-Controlled Metal-Free Catalysts: Facet-Sensitive Catalytic Activity Induced by the Arrangement Pattern of Noncovalent Supramolecular Chains. <i>ACS Nano</i> , 2017 , 11, 4866-4876	16.7	26
355	Intermolecular Charge-Transfer Interactions Facilitate Two-Photon Absorption in Styrylpyridine-Tetracyanobenzene Cocrystals. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 783	1-7835	102
354	Inverse Magnetoresistance in Polymer Spin Valves. ACS Applied Materials & Damp; Interfaces, 2017, 9, 156	4951 56	5217
353	The Origins of the Differences between Alkyne Hydroalkoxylations Catalyzed by 8-Quinolinolato- and Dipyrrinato-Ligated RhI Complexes: A DFT Mechanistic Study. <i>European Journal of Inorganic</i> <i>Chemistry</i> , 2017 , 2017, 2713-2722	2.3	6
352	Competitive Coordination Strategy to Finely Tune Pore Environment of Zirconium-Based Metal-Organic Frameworks. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 22732-22738	9.5	33

351	Competition between Arene P erfluoroarene and Charge-Transfer Interactions in Organic Light-Harvesting Systems. <i>Angewandte Chemie</i> , 2017 , 129, 10488-10492	3.6	31
350	Competition between Arene-Perfluoroarene and Charge-Transfer Interactions in Organic Light-Harvesting Systems. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 10352-10356	16.4	105
349	Intermolecular Charge-Transfer Interactions Facilitate Two-Photon Absorption in Styrylpyridinelletracyanobenzene Cocrystals. <i>Angewandte Chemie</i> , 2017 , 129, 7939-7943	3.6	27
348	A Retina-Like Dual Band Organic Photosensor Array for Filter-Free Near-Infrared-to-Memory Operations. <i>Advanced Materials</i> , 2017 , 29, 1701772	24	73
347	Growth and carrier-transport performance of a poly(3-hexylthiophene)/1,2,3,4-bis(p-methylbenzylidene) sorbitol hybrid shish-kebab nanostructure. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 3983-3992	7.1	7
346	Comparable charge transport property based on SIIIS interactions with that of IIIstacking in a bis-fused tetrathiafulvalene compound. <i>Science China Chemistry</i> , 2017 , 60, 510-515	7.9	6
345	Ligand effects on electronic and optoelectronic properties of two-dimensional PbS necking percolative superlattices. <i>Nano Research</i> , 2017 , 10, 1249-1257	10	14
344	Ternary NiCo P Nanowires as pH-Universal Electrocatalysts for Highly Efficient Hydrogen Evolution Reaction. <i>Advanced Materials</i> , 2017 , 29, 1605502	24	419
343	Construction of Two-Dimensional Chiral Networks through Atomic Bromine on Surfaces. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 326-331	6.4	23
342	Tuning crystal polymorphs of a Extended tetrathiafulvalene-based cruciform molecule towards high-performance organic field-effect transistors. <i>Science China Materials</i> , 2017 , 60, 75-82	7.1	9
341	Molecular Crystal Engineering: Tuning Organic Semiconductor from p-type to n-type by Adjusting Their Substitutional Symmetry. <i>Advanced Materials</i> , 2017 , 29, 1605053	24	47
340	Asymmetric thiophene/pyridine flanked diketopyrrolopyrrole polymers for high performance polymer ambipolar field-effect transistors and solar cells. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 566-	-372	38
339	Photolysis of polymeric self-assembly controlled by donor-acceptor interaction. <i>Chemical Communications</i> , 2017 , 53, 11822-11825	5.8	15
338	A bowl-shaped sumanene derivative with dense convex-concave columnar packing for high-performance organic field-effect transistors. <i>Chemical Communications</i> , 2017 , 53, 11407-11409	5.8	21
337	Photosensors: A Retina-Like Dual Band Organic Photosensor Array for Filter-Free Near-Infrared-to-Memory Operations (Adv. Mater. 32/2017). <i>Advanced Materials</i> , 2017 , 29,	24	6
336	Short-Wave Near-Infrared Linear Dichroism of Two-Dimensional Germanium Selenide. <i>Journal of the American Chemical Society</i> , 2017 , 139, 14976-14982	16.4	191
335	Assembly of Econjugated Nanosystems for Electronic Sensing Devices. <i>Advanced Electronic Materials</i> , 2017 , 3, 1700209	6.4	8
334	Random Access Memory: Organic Ferroelectric-Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Half-Selection Problem (Adv. Mater. 34/2017). Advanced Materials 2017, 29	24	5

333	Rechargeable Batteries: Formation of Septuple-Shelled (Co2/3Mn1/3)(Co5/6Mn1/6)2O4 Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery (Adv. Mater. 34/2017). <i>Advanced Materials</i> , 2017 , 29,	24	10
332	Titelbild: Competition between Arene P erfluoroarene and Charge-Transfer Interactions in Organic Light-Harvesting Systems (Angew. Chem. 35/2017). <i>Angewandte Chemie</i> , 2017 , 129, 10383-10383	3.6	
331	Formation of Septuple-Shelled (Co Mn)(Co Mn) O Hollow Spheres as Electrode Material for Alkaline Rechargeable Battery. <i>Advanced Materials</i> , 2017 , 29, 1700550	24	108
330	Organic Ferroelectric-Based 1T1T Random Access Memory Cell Employing a Common Dielectric Layer Overcoming the Half-Selection Problem. <i>Advanced Materials</i> , 2017 , 29, 1701907	24	34
329	Capillary-Bridge Mediated Assembly of Conjugated Polymer Arrays toward Organic Photodetectors. <i>Advanced Functional Materials</i> , 2017 , 27, 1701347	15.6	43
328	Enhanced stability of a rubrene analogue with a brickwork packing motif. <i>Journal of Materials Chemistry C</i> , 2017 , 5, 8376-8379	7.1	3
327	Approaching Intra- and Interchain Charge Transport of Conjugated Polymers Facilely by Topochemical Polymerized Single Crystals. <i>Advanced Materials</i> , 2017 , 29, 1701251	24	84
326	Versatile asymmetric thiophene/benzothiophene flanked diketopyrrolopyrrole polymers with ambipolar properties for OFETs and OSCs. <i>Polymer Chemistry</i> , 2017 , 8, 5603-5610	4.9	26
325	Aromatic Extension at 2,6-Positions of Anthracene toward an Elegant Strategy for Organic Semiconductors with Efficient Charge Transport and Strong Solid State Emission. <i>Journal of the American Chemical Society</i> , 2017 , 139, 17261-17264	16.4	124
324	Design and effective synthesis methods for high-performance polymer semiconductors in organic field-effect transistors. <i>Materials Chemistry Frontiers</i> , 2017 , 1, 2423-2456	7.8	80
323	Halogen bonded cocrystal polymorphs of 1,4-di(4?-pyridyl)-1,3-diacetylene. <i>CrystEngComm</i> , 2017 , 19, 4505-4509	3.3	13
322	Tuning the donors to control the lifetimes of charge-separated states in triazine-based donor-acceptor systems. <i>Dyes and Pigments</i> , 2017 , 136, 404-415	4.6	16
321	Dually Ordered Porous TiO -rGO Composites with Controllable Light Absorption Properties for Efficient Solar Energy Conversion. <i>Advanced Materials</i> , 2017 , 29, 1604795	24	59
320	Solution-Processed Flexible Organic Ferroelectric Phototransistor. <i>ACS Applied Materials & amp; Interfaces</i> , 2017 , 9, 43880-43885	9.5	19
319	Organic cocrystals: the development of ferroelectric properties. <i>Science China Materials</i> , 2016 , 59, 523-	5 3 Ω	25
318	Effect of Alkyl Side Chains of Conjugated Polymer Donors on the Device Performance of Non-Fullerene Solar Cells. <i>Macromolecules</i> , 2016 , 49, 6445-6454	5.5	70
317	ECyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution: experimental and theoretical calculation study. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 1417	′0-141	7 ^{§65}
316	Kilohertz organic complementary inverters driven by surface-grafting conducting polypyrrole electrodes. <i>Solid-State Electronics</i> , 2016 , 123, 51-57	1.7	5

(2016-2016)

315	Organic Cocrystals: New Strategy for Molecular Collaborative Innovation. <i>Topics in Current Chemistry</i> , 2016 , 374, 83	7.2	37	
314	Mass Production of Nanogap Electrodes toward Robust Resistive Random Access Memory. <i>Advanced Materials</i> , 2016 , 28, 8227-8233	24	18	
313	Vertical Single-Crystalline Organic Nanowires on Graphene: Solution-Phase Epitaxy and Optical Microcavities. <i>Nano Letters</i> , 2016 , 16, 4754-62	11.5	20	
312	Large-Size 2D ECu S Nanosheets with Giant Phase Transition Temperature Lowering (120 K) Synthesized by a Novel Method of Super-Cooling Chemical-Vapor-Deposition. <i>Advanced Materials</i> , 2016 , 28, 8271-8276	24	46	
311	Co-crystal engineering: a novel method to obtain one-dimensional (1D) carbon nanocrystals of corannulene-fullerene by a solution process. <i>Nanoscale</i> , 2016 , 8, 14920-4	7.7	47	
310	Construction of Ag/AgCl nanostructures from Ag nanoparticles as high-performance visible-light photocatalysts. <i>Journal of Nanoparticle Research</i> , 2016 , 18, 1	2.3	2	
309	Multilevel Investigation of Charge Transport in Conjugated Polymers. <i>Accounts of Chemical Research</i> , 2016 , 49, 2435-2443	24.3	56	
308	Enhancing Photoinduced Charge Separation through Donor Moiety in DonorAcceptor Organic Semiconductors. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 25263-25275	3.8	19	
307	Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering. <i>Science Advances</i> , 2016 , 2, e1501491	14.3	96	
306	Tuning the aggregation structure and electrical property of 2.6-diphenyl-anthracene by the density of octadecyltrichlorosilane. <i>Science China Chemistry</i> , 2016 , 59, 1645-1650	7.9	4	
305	High Hole Mobility in Long-Range Ordered 2D Lead Sulfide Nanocrystal Monolayer Films. <i>Advanced Functional Materials</i> , 2016 , 26, 5182-5188	15.6	20	
304	Gibbs-Curie-Wulff Theorem in Organic Materials: A Case Study on the Relationship between Surface Energy and Crystal Growth. <i>Advanced Materials</i> , 2016 , 28, 1697-702	24	55	
303	The Impact of Interlayer Electronic Coupling on Charge Transport in Organic Semiconductors: A Case Study on Titanylphthalocyanine Single Crystals. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 5206-9	16.4	38	
302	Controlled Growth of Ultrathin Film of Organic Semiconductors by Balancing the Competitive Processes in Dip-Coating for Organic Transistors. <i>Langmuir</i> , 2016 , 32, 6246-54	4	39	
301	Tuning charge transport from unipolar (n-type) to ambipolar in bis(naphthalene diimide) derivatives by introducing Econjugated heterocyclic bridging moieties. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 7230-7240	7.1	20	
300	Diamonia de la Constantia			
	Plasmonic materials for flexible near-infrared photovoltaic devices. <i>Science China Materials</i> , 2016 , 59, 410-411	7.1	2	
299		7.1 24	52	
299 298	59, 410-411 2D Mica Crystal as Electret in Organic Field-Effect Transistors for Multistate Memory. <i>Advanced</i>			

297	High-Mobility N-Type Organic Field-Effect Transistors of Rylene Compounds Fabricated by a Trace-Spin-Coating Technique. <i>Advanced Electronic Materials</i> , 2016 , 2, 1500430	6.4	11
296	3D Self-Supporting Porous Magnetic Assemblies for Water Remediation and Beyond. <i>Advanced Energy Materials</i> , 2016 , 6, 1600473	21.8	31
295	Experimental and theoretical studies on competitive adsorption of aromatic compounds on reduced graphene oxides. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5654-5662	13	162
294	Soft-Etching Copper and Silver Electrodes for Significant Device Performance Improvement toward Facile, Cost-Effective, Bottom-Contacted, Organic Field-Effect Transistors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2016 , 8, 7919-27	9.5	8
293	Pyridyl-substituted anthracene derivatives with solid-state emission and charge transport properties. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 3621-3627	7.1	22
292	Conjugated polymer with ternary electron-deficient units for ambipolar nanowire field-effect transistors. <i>Journal of Polymer Science Part A</i> , 2016 , 54, 34-38	2.5	18
291	Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 2269-2273	7.1	114
290	Unveiling Secrets of Overcoming the "Heteroatom Problem" in Palladium-Catalyzed Aerobic C-H Functionalization of Heterocycles: A DFT Mechanistic Study. <i>Journal of the American Chemical Society</i> , 2016 , 138, 2712-23	16.4	62
289	Epitaxially-crystallized oriented naphthalene bis(dicarboximide) morphology for significant performance improvement of electron-transporting thin-film transistors. <i>Chemical Communications</i> , 2016 , 52, 4902-5	5.8	21
288	Multi-walled carbon nanotubes covalently functionalized by axially coordinated metal-porphyrins: Facile syntheses and temporally dependent optical performance. <i>Nano Research</i> , 2016 , 9, 458-472	10	22
287	Poly(pentacyclic lactam-alt-diketopyrrolopyrrole) for field-effect transistors and polymer solar cells processed from non-chlorinated solvents. <i>Polymer Chemistry</i> , 2016 , 7, 164-170	4.9	10
286	Topochemical polymerization of diacetylenes. <i>Chinese Science Bulletin</i> , 2016 , 61, 2688-2706	2.9	5
285	Novel Air Stable Organic Radical Semiconductor of Dimers of Dithienothiophene, Single Crystals, and Field-Effect Transistors. <i>Advanced Materials</i> , 2016 , 28, 7466-71	24	33
284	A General Method for Growing Two-Dimensional Crystals of Organic Semiconductors by Bolution Epitaxy[]Angewandte Chemie, 2016, 128, 9671-9675	3.6	22
283	Three-Component Integrated Ultrathin Organic Photosensors for Plastic Optoelectronics. <i>Advanced Materials</i> , 2016 , 28, 624-30	24	43
282	Deepening Insights of Charge Transfer and Photophysics in a Novel Donor-Acceptor Cocrystal for Waveguide Couplers and Photonic Logic Computation. <i>Advanced Materials</i> , 2016 , 28, 5954-62	24	86
281	Organic Memory Devices: 2D Mica Crystal as Electret in Organic Field-Effect Transistors for Multistate Memory (Adv. Mater. 19/2016). <i>Advanced Materials</i> , 2016 , 28, 3792	24	2
280	Asymmetric Diketopyrrolopyrrole Conjugated Polymers for Field-Effect Transistors and Polymer Solar Cells Processed from a Nonchlorinated Solvent. <i>Advanced Materials</i> , 2016 , 28, 943-50	24	128

(2016-2016)

279	Perovskite Photodetectors based on CH NH PbI Single Crystals. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 2675-2679	4.5	25
278	Unveiling the Switching Riddle of Silver Tetracyanoquinodimethane Towards Novel Planar Single-Crystalline Electrochemical Metallization Memories. <i>Advanced Materials</i> , 2016 , 28, 7094-100	24	12
277	A General Method for Growing Two-Dimensional Crystals of Organic Semiconductors by "Solution Epitaxy". <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 9519-23	16.4	125
276	Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations. <i>Small</i> , 2016 , 12, 1252-94	11	141
275	Titelbild: A General Method for Growing Two-Dimensional Crystals of Organic Semiconductors by Bolution Epitaxy[[Angew. Chem. 33/2016). <i>Angewandte Chemie</i> , 2016 , 128, 9593-9593	3.6	
274	Charge Transport in Organic and Polymeric Semiconductors for Flexible and Stretchable Devices. <i>Advanced Materials</i> , 2016 , 28, 4513-23	24	147
273	Electron Mobility Exceeding 10 cm(2) V(-1) s(-1) and Band-Like Charge Transport in Solution-Processed n-Channel Organic Thin-Film Transistors. <i>Advanced Materials</i> , 2016 , 28, 5276-83	24	149
272	The Impact of Interlayer Electronic Coupling on Charge Transport in Organic Semiconductors: A Case Study on Titanylphthalocyanine Single Crystals. <i>Angewandte Chemie</i> , 2016 , 128, 5292-5295	3.6	5
271	Organic Light-Emitting Transistors: Organic Light-Emitting Transistors: Materials, Device Configurations, and Operations (Small 10/2016). <i>Small</i> , 2016 , 12, 1392-1392	11	4
270	Effect of Triplet State on the Lifetime of Charge Separation in Ambipolar D-A1-A2 Organic Semiconductors. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 11338-11349	3.8	22
269	Efficient ambipolar transport properties in alternate stacking donor-acceptor complexes: from experiment to theory. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 14094-103	3.6	52
268	Ultrathin annealing-free polymer layers: new opportunity to enhance mobility and stability of low-voltage thin-film organic transistors. <i>RSC Advances</i> , 2016 , 6, 51264-51269	3.7	1
267	Effect of Fluorination on Molecular Orientation of Conjugated Polymers in High Performance Field-Effect Transistors. <i>Macromolecules</i> , 2016 , 49, 6431-6438	5.5	55
266	Recent advances in one-dimensional organic pl heterojunctions for optoelectronic device applications. <i>Journal of Materials Chemistry C</i> , 2016 , 4, 9388-9398	7.1	37
265	2D Materials: Large-Size 2D ECu2S Nanosheets with Giant Phase Transition Temperature Lowering (120 K) Synthesized by a Novel Method of Super-Cooling Chemical-Vapor-Deposition (Adv. Mater. 37/2016). <i>Advanced Materials</i> , 2016 , 28, 8316-8316	24	1
264	Uncovering the Intramolecular Emission and Tuning the Nonlinear Optical Properties of Organic Materials by Cocrystallization. <i>Angewandte Chemie</i> , 2016 , 128, 14229-14233	3.6	28
263	Vertical 2D MoO2/MoSe2 CoreBhell Nanosheet Arrays as High-Performance Electrocatalysts for Hydrogen Evolution Reaction. <i>Advanced Functional Materials</i> , 2016 , 26, 8537-8544	15.6	134
262	Metal-organic frameworks as selectivity regulators for hydrogenation reactions. <i>Nature</i> , 2016 , 539, 76-8	9 0.4	925

261	Uncovering the Intramolecular Emission and Tuning the Nonlinear Optical Properties of Organic Materials by Cocrystallization. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14023-14027	16.4	82
260	Top-Pinning Controlled Dewetting for Fabrication of Large-Scaled Polymer Microwires and Applications in OFETs. <i>Advanced Electronic Materials</i> , 2016 , 2, 1600111	6.4	9
259	Organic field-effect transistor-based gas sensors. <i>Chemical Society Reviews</i> , 2015 , 44, 2087-107	58.5	309
258	Solution-Processed Large-Area Nanocrystal Arrays of Metal-Organic Frameworks as Wearable, Ultrasensitive, Electronic Skin for Health Monitoring. <i>Small</i> , 2015 , 11, 3351-6	11	61
257	High-energy, stable and recycled molecular solar thermal storage materials using AZO/graphene hybrids by optimizing hydrogen bonds. <i>Nanoscale</i> , 2015 , 7, 16214-21	7.7	45
256	Individual single-crystal nanowires as electrodes for organic single-crystal nanodevices. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9534-9539	7.1	4
255	Rational Design of Charge-Transfer Interactions in Halogen-Bonded Co-crystals toward Versatile Solid-State Optoelectronics. <i>Journal of the American Chemical Society</i> , 2015 , 137, 11038-46	16.4	198
254	Conjugated polymers with deep LUMO levels for field-effect transistors and polymer p olymer solar cells. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 8255-8261	7.1	18
253	A cross-dipole stacking molecule of an anthracene derivative: integrating optical and electrical properties. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 3068-3071	7.1	32
252	The position effect of an ethynyl spacer on the carrier mobility of anthracene derivatives. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 5368-5371	7.1	12
251	Single grain boundary break junction for suspended nanogap electrodes with gapwidth down to 1-2 nm by focused ion beam milling. <i>Advanced Materials</i> , 2015 , 27, 3002-6	24	46
250	Revealing the charge-transfer interactions in self-assembled organic cocrystals: two-dimensional photonic applications. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 6785-9	16.4	169
249	Nanogap Electrodes: Single Grain Boundary Break Junction for Suspended Nanogap Electrodes with Gapwidth Down to 1½ nm by Focused Ion Beam Milling (Adv. Mater. 19/2015). <i>Advanced Materials</i> , 2015 , 27, 3095-3095	24	4
248	A supramolecular assembly of cross-linked azobenzene/polymers for a high-performance light-driven actuator. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 16453-16460	13	55
247	Structure property relationships of benzo[b]thiophen/benzo[b]furan end-capped naphthalene oligomers and their application for organic field effect transistors. <i>RSC Advances</i> , 2015 , 5, 31018-31023	3.7	5
246	Side Chain Influence on the Morphology and Photovoltaic Performance of 5-Fluoro-6-alkyloxybenzothiadiazole and Benzodithiophene Based Conjugated Polymers. <i>ACS Applied Materials & Discrete Section</i> , 7, 10710-7	9.5	36
245	A high energy density azobenzene/graphene hybrid: a nano-templated platform for solar thermal storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 11787-11795	13	74
244	Green light-emitting diode from bromine based organic-inorganic halide perovskite. <i>Science China Materials</i> , 2015 , 58, 186-191	7.1	54

(2015-2015)

243	Naphthyl substituted anthracene combining charge transport with light emission. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10695-10698	7.1	22
242	Reversible Tuning of Interfacial and Intramolecular Charge Transfer in Individual MnPc Molecules. <i>Nano Letters</i> , 2015 , 15, 8091-8	11.5	11
241	Synthesis and application of benzooxadiazole-based conjugated polymers in high performance phototransistors. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 12083-12089	7.1	4
240	Polyimide (PI) high-quality polymer dielectric films with the features of anti-solvents and large-area consistency for field-effect transistors. <i>RSC Advances</i> , 2015 , 5, 88059-88062	3.7	3
239	Role of redox centre in charge transport investigated by novel self-assembled conjugated polymer molecular junctions. <i>Nature Communications</i> , 2015 , 6, 7478	17.4	37
238	High charge mobility polymers based on a new di(thiophen-2-yl)thieno[3,2-b]thiophene for transistors and solar cells. <i>Polymer Chemistry</i> , 2015 , 6, 7684-7692	4.9	7
237	High mobility emissive organic semiconductor. <i>Nature Communications</i> , 2015 , 6, 10032	17.4	303
236	Poly(sodium-4-styrene sulfonate) (PSSNa)-assisted transferable flexible, top-contact high-resolution free-standing organic field-effect transistors. <i>RSC Advances</i> , 2015 , 5, 98288-98292	3.7	9
235	Synthesis, characterization and field-effect transistor performance of a benzoannulated pentathienoacene derivative. <i>New Journal of Chemistry</i> , 2015 , 39, 1045-1050	3.6	3
234	Tuning the crystal polymorphs of alkyl thienoacene via solution self-assembly toward air-stable and high-performance organic field-effect transistors. <i>Advanced Materials</i> , 2015 , 27, 825-30	24	88
233	Competitive Adsorption of Pb , Ni , and Sr Ions on Graphene Oxides: A Combined Experimental and Theoretical Study. <i>ChemPlusChem</i> , 2015 , 80, 480-484	2.8	89
232	Three-Dimensional Multilayer Assemblies of MoS2/Reduced Graphene Oxide for High-Performance Lithium Ion Batteries. <i>Particle and Particle Systems Characterization</i> , 2015 , 32, 489-497	3.1	32
231	Molecular Electronics: Nanogap Electrodes towards Solid State Single-Molecule Transistors (Small 46/2015). <i>Small</i> , 2015 , 11, 6240-6240	11	2
230	Organic Nano Field-Effect Transistor 2015 , 309-356		
229	Quick Fabrication of Large-area Organic Semiconductor Single Crystal Arrays with a Rapid Annealing Self-Solution-Shearing Method. <i>Scientific Reports</i> , 2015 , 5, 13195	4.9	31
228	Porphyrin Supramolecular 1D Structures via Surfactant-Assisted Self-Assembly. <i>Advanced Materials</i> , 2015 , 27, 5379-87	24	85
227	High Performance Polymer Nanowire Field-Effect Transistors with Distinct Molecular Orientations. <i>Advanced Materials</i> , 2015 , 27, 4963-8	24	68
226	Diaceno[a,e]pentalenes: An Excellent Molecular Platform for High-Performance Organic Semiconductors. <i>Chemistry - A European Journal</i> , 2015 , 21, 17016-22	4.8	36

225	Nanogap Electrodes towards Solid State Single-Molecule Transistors. <i>Small</i> , 2015 , 11, 6115-41	11	39
224	Molecular Heterojunctions of Oligo(phenylene ethynylene)s with Linear to Cruciform Framework. <i>Advanced Functional Materials</i> , 2015 , 25, 1700-1708	15.6	25
223	High-Performance UV-Sensitive Organic Phototransistors Based on Benzo[1,2-b:4,5-b?]dithiophene Dimers Linked with Unsaturated Bonds. <i>Advanced Electronic Materials</i> , 2015 , 1, 1500071	6.4	26
222	Revealing the Charge-Transfer Interactions in Self-Assembled Organic Cocrystals: Two-Dimensional Photonic Applications. <i>Angewandte Chemie</i> , 2015 , 127, 6889-6893	3.6	38
221	Pyridine-bridged diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells. <i>Polymer Chemistry</i> , 2015 , 6, 4775-4783	4.9	31
220	High-performance organic field-effect transistors based on single-crystalline microribbons of a two-dimensional fused heteroarene semiconductor. <i>Chemical Communications</i> , 2015 , 51, 11961-3	5.8	18
219	Thin film field-effect transistors of 2,6-diphenyl anthracene (DPA). <i>Chemical Communications</i> , 2015 , 51, 11777-9	5.8	78
218	Thermal induced single grain boundary break junction for suspended nanogap electrodes. <i>Science China Materials</i> , 2015 , 58, 769-774	7.1	3
217	Challenges of organic Bocrystals Science China Materials, 2015 , 58, 854-859	7.1	27
216	Modulating the metal/organic interface via CuTCNQ decorated layer toward high performance bottom-contact single-crystal transistors. <i>Science China Chemistry</i> , 2015 , 58, 1027-1031	7.9	2
215	Precisely Tailoring the Stoichiometric Stacking of Perylene-TCNQ Co-Crystals towards Different Nano and Microstructures with Varied Optoelectronic Performances. <i>Small</i> , 2015 , 11, 2150-6	11	71
214	High-mobility polymeric semiconductors. <i>Chinese Science Bulletin</i> , 2015 , 60, 2169-2187	2.9	8
213	Touching polymer chains by organic field-effect transistors. Scientific Reports, 2014, 4, 6387	4.9	5
212	Self-Aligned Single-Crystal Graphene Grains. <i>Advanced Functional Materials</i> , 2014 , 24, 1664-1670	15.6	43
211	Regioselective Deposition Method to Pattern Silver Electrodes Facilely and Efficiently with High Resolution: Towards All-Solution-Processed, High-Performance, Bottom-Contacted, Flexible, Polymer-Based Electronics. <i>Advanced Functional Materials</i> , 2014 , 24, 3783-3789	15.6	29
210	Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. <i>Advanced Materials</i> , 2014 , 26, 1348-53	24	115
209	Graphene: Near-Equilibrium Chemical Vapor Deposition of High-Quality Single-Crystal Graphene Directly on Various Dielectric Substrates (Adv. Mater. 9/2014). <i>Advanced Materials</i> , 2014 , 26, 1471-1471	24	1
208	Rubrene analogues with the aggregation-induced emission enhancement behaviour. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 884-890	7.1	21

207	Easily solution-processed, high-performance microribbon transistors based on a 2D condensed benzothiophene derivative. <i>Chemical Communications</i> , 2014 , 50, 442-4	5.8	38
206	Solution-processed high-performance flexible 9, 10-bis(phenylethynyl)anthracene organic single-crystal transistor and ring oscillator. <i>Applied Physics Letters</i> , 2014 , 104, 063305	3.4	25
205	Graphene: Layer-Stacking Growth and Electrical Transport of Hierarchical Graphene Architectures (Adv. Mater. 20/2014). <i>Advanced Materials</i> , 2014 , 26, 3355-3355	24	
204	A novel method for photolithographic polymer shadow masking: toward high-resolution high-performance top-contact organic field effect transistors. <i>Chemical Communications</i> , 2014 , 50, 832	8-38	20
203	Solution-sheared ultrathin films for highly-sensitive ammonia detection using organic thin-film transistors. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 1264	7.1	56
202	Enhancement of the p-channel performance of sulfur-bridged annulene through a donor\(\text{donor}\) co-crystal approach. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8886-8891	7.1	22
201	High performance n-type and ambipolar small organic semiconductors for organic thin film transistors. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 22448-57	3.6	143
200	5,6-Difluorobenzothiadiazole and silafluorene based conjugated polymers for organic photovoltaic cells. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5116-5123	7.1	26
199	Two-dimensional Cr2O3 and interconnected graphene Tr2O3 nanosheets: synthesis and their application in lithium storage. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 944-948	13	44
198	A thienyl peripherally substituted rubrene analogue with constant emissions and good film forming ability. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8222-8225	7.1	10
197	Porphyrin nanoassemblies via surfactant-assisted assembly and single nanofiber nanoelectronic sensors for high-performance HDD apor sensing. ACS Nano, 2014, 8, 3402-11	16.7	74
196	Synthesis and aggregation-induced emissions of thienyl substituted cyclobutene derivatives. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 5083-5086	7.1	11
195	Inkjet printing short-channel polymer transistors with high-performance and ultrahigh photoresponsivity. <i>Advanced Materials</i> , 2014 , 26, 4683-9	24	74
194	Silver mirror reaction for organic electronics: towards high-performance organic field-effect transistors and circuits. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 4142	7.1	26
193	Charge-transfer complex crystal based on extended-Econjugated acceptor and sulfur-bridged annulene: charge-transfer interaction and remarkable high ambipolar transport characteristics. <i>Advanced Materials</i> , 2014 , 26, 4093-9	24	119
192	Organic Electronics: R egioselective Deposition I Method to Pattern Silver Electrodes Facilely and Efficiently with High Resolution: Towards All-Solution-Processed, High-Performance, Bottom-Contacted, Flexible, Polymer-Based Electronics (Adv. Funct. Mater. 24/2014). <i>Advanced</i>	15.6	3
191	Enhancement of thermoelectric performance in InAs nanotubes by tuning quantum confinement effect. <i>Journal of Applied Physics</i> , 2014 , 115, 124308	2.5	13
190	Copolymers of benzo[1,2-b:4,5-b?]dithiophene and bithiazole for high-performance thin film phototransistors. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 9505-9511	7.1	25

189	Transistors: Inkjet Printing Short-Channel Polymer Transistors with High-Performance and Ultrahigh Photoresponsivity (Adv. Mater. 27/2014). <i>Advanced Materials</i> , 2014 , 26, 4752-4752	24	О
188	Synthesis, characterization, and field-effect transistor performance of a two-dimensional starphene containing sulfur. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 10011-10016	7.1	10
187	EConjugated Molecules Crosslinked Graphene-Based Ultrathin Films and Their Tunable Performances in Organic Nanoelectronics. <i>Advanced Functional Materials</i> , 2014 , 24, 543-554	15.6	22
186	Large scale, flexible organic transistor arrays and circuits based on polyimide materials. <i>Organic Electronics</i> , 2013 , 14, 2528-2533	3.5	54
185	Poly(3-hexylthiophene) monolayer nanowhiskers. <i>Polymer Chemistry</i> , 2013 , 4, 4308	4.9	34
184	Substitution effects on the electrical tranporting properties of tetrathia[22]annulene[2,1,2,1]: experimental and theoretical investigations. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 5765	7.1	14
183	25th anniversary article: key points for high-mobility organic field-effect transistors. <i>Advanced Materials</i> , 2013 , 25, 6158-83	24	598
182	Donor Ecceptor copolymers containing quinacridone and benzothiadiazole for thin film transistors. Journal of Materials Chemistry C, 2013 , 1, 2021	7.1	24
181	Stepwise Reduction of Immobilized Monolayer Graphene Oxides. <i>Chemistry of Materials</i> , 2013 , 25, 4839	- 4 8648	12
180	Integration of antireflection and light diffraction in nature: a strategy for light trapping. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10607	13	21
179	Fullerene/sulfur-bridged annulene cocrystals: two-dimensional segregated heterojunctions with ambipolar transport properties and photoresponsivity. <i>Journal of the American Chemical Society</i> , 2013 , 135, 558-61	16.4	150
178	A DAD swivel-cruciform oligothiophene based on 5,5?-bibenzothiadiazole. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 414-417	7.1	12
177	Controllable Growth and Assembly of One-Dimensional Structures of Organic Functional Materials for Optoelectronic Applications 2013 , 397-414		
176	Electrical Switching Behavior of a [60]Fullerene-Based Molecular Wire Encapsulated in a Syndiotactic Poly(methyl methacrylate) Helical Cavity. <i>Angewandte Chemie</i> , 2013 , 125, 1083-1087	3.6	10
175	Innentitelbild: Electrical Switching Behavior of a [60]Fullerene-Based Molecular Wire Encapsulated in a Syndiotactic Poly(methyl methacrylate) Helical Cavity (Angew. Chem. 3/2013). <i>Angewandte Chemie</i> , 2013 , 125, 804-804	3.6	
174	Photoswitches: High Performance Photoswitches Based on Flexible and Amorphous DA Polymer Nanowires (Small 2/2013). <i>Small</i> , 2013 , 9, 166-166	11	2
173	Dye-Sensitized Solar Cells (DSSCs) 2013 , 437-465		1
172	Polymer Solar Cells 2013 , 407-435		1

(2013-2013)

171	Ordering of conjugated polymer molecules: recent advances and perspectives. <i>Polymer Chemistry</i> , 2013 , 4, 5197	4.9	90
170	Conjugated polymers with 2,7-linked 3,6-difluorocarbazole as donor unit for high efficiency polymer solar cells. <i>Polymer Chemistry</i> , 2013 , 4, 2773	4.9	30
169	Synthesis and morphology transformation of single-crystal graphene domains based on activated carbon dioxide by chemical vapor deposition. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2990	7.1	23
168	Reduction of graphene oxide to highly conductive graphene by Lawesson's reagent and its electrical applications. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3104	7.1	127
167	Atomically flat, large-sized, two-dimensional organic nanocrystals. Small, 2013, 9, 990-5	11	45
166	Electronic Process in Organic Solids 2013 , 1-42		
165	Organic/Polymeric Semiconductors for Field-Effect Transistors 2013, 43-94		2
164	Organic/Polymeric Field-Effect Transistors 2013 , 95-170		3
163	Organic Circuits and Organic Single-Molecule Transistors 2013 , 171-276		
162	Polymer Light-Emitting Diodes (PLEDs): Devices and Materials 2013 , 277-336		2
161	Organic Solids for Photonics 2013 , 337-349		
160	Organic Photonic Devices 2013 , 351-374		3
159	Organic Solar Cells Based on Small Molecules 2013 , 375-405		1
158	Organic Thermoelectric Power Devices 2013 , 467-486		
157	Glossary of the book 2013 , 487-495		
156	Low-temperature, bottom-up synthesis of graphene via a radical-coupling reaction. <i>Journal of the American Chemical Society</i> , 2013 , 135, 9050-4	16.4	51
155	Highly Stable Graphene-Based Multilayer Films Immobilized via Covalent Bonds and Their Applications in Organic Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2013 , 23, 2422-2435	15.6	50
154	Highly active MnO2 nanosheet synthesis from graphene oxide templates and their application in efficient oxidative degradation of methylene blue. <i>RSC Advances</i> , 2013 , 3, 12909	3.7	79

153	N-Alkyl substituted di(perylene bisimides) as air-stable electron transport materials for solution-processible thin-film transistors with enhanced performance. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 3200	7.1	36
152	High Performance Nanocrystals of a DonorAcceptor Conjugated Polymer. <i>Chemistry of Materials</i> , 2013 , 25, 2649-2655	9.6	59
151	High performance photoswitches based on flexible and amorphous D-A polymer nanowires. <i>Small</i> , 2013 , 9, 294-9	11	23
150	Organic Nanocrystals: Atomically Flat, Large-Sized, Two-Dimensional Organic Nanocrystals (Small 7/2013). <i>Small</i> , 2013 , 9, 962-962	11	3
149	Visible-Light Photocatalytic Degradation of Methylene Blue Using SnO2/年e2O3 Hierarchical Nanoheterostructures. <i>ChemPlusChem</i> , 2013 , 78, 192-199	2.8	62
148	Substrate-free ultra-flexible organic field-effect transistors and five-stage ring oscillators. <i>Advanced Materials</i> , 2013 , 25, 5455-60	24	91
147	Substitution effect on molecular packing and transistor performance of indolo[3,2-b]carbazole derivatives. <i>Journal of Materials Chemistry</i> , 2012 , 22, 4409-4417		50
146	High performance n-type single crystalline transistors of naphthalene bis(dicarboximide) and their anisotropic transport in crystals. <i>Chemical Communications</i> , 2012 , 48, 5154-6	5.8	36
145	Synthesis of a Conjugated Polymer with Broad Absorption and Its Application in High-Performance Phototransistors. <i>Macromolecules</i> , 2012 , 45, 1296-1302	5.5	57
144	A conjugated polymer based on 5,5?-bibenzo[c][1,2,5]thiadiazole for high-performance solar cells. <i>Journal of Materials Chemistry</i> , 2012 , 22, 3432		19
143	Interface engineering for high-performance organic field-effect transistors. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 14165-80	3.6	79
142	Conducting Polymers: Applications in Electronics and Photovoltaics 2012,		1
141	Photovoltaic effect of individual polymer nanotube. <i>Applied Physics Letters</i> , 2012 , 100, 173902	3.4	5
140	Solvent-vapor induced self-assembly of a conjugated polymer: A correlation between solvent nature and transistor performance. <i>Organic Electronics</i> , 2012 , 13, 2372-2378	3.5	21
139	Synthesizing MnO2 nanosheets from graphene oxide templates for high performance pseudosupercapacitors. <i>Chemical Science</i> , 2012 , 3, 433-437	9.4	177
138	Mass-production of single-crystalline device arrays of an organic charge-transfer complex for its memory nature. <i>Small</i> , 2012 , 8, 557-60, 478	11	27
137	Device Arrays: Mass-Production of Single-Crystalline Device Arrays of an Organic Charge-Transfer Complex for its Memory Nature (Small 4/2012). <i>Small</i> , 2012 , 8, 478-478	11	1
136	Semiconducting Econjugated systems in field-effect transistors: a material odyssey of organic electronics. <i>Chemical Reviews</i> , 2012 , 112, 2208-67	68.1	2738

135	Organic photoresponse materials and devices. Chemical Society Reviews, 2012, 41, 1754-808	58.5	493
134	High-performance and stable organic transistors and circuits with patterned polypyrrole electrodes. <i>Advanced Materials</i> , 2012 , 24, 2159-64	24	43
133	Coaxial organic p-n heterojunction nanowire arrays: one-step synthesis and photoelectric properties. <i>Advanced Materials</i> , 2012 , 24, 2332-6	24	80
132	High mobility, air stable, organic single crystal transistors of an n-type diperylene bisimide. <i>Advanced Materials</i> , 2012 , 24, 2626-30	24	187
131	Sulfur-bridged annulene-TCNQ co-crystal: a self-assembled "molecular level heterojunction" with air stable ambipolar charge transport behavior. <i>Advanced Materials</i> , 2012 , 24, 2603-7	24	176
130	Anisotropic photoresponse properties of single micrometer-sized GeSe nanosheet. <i>Advanced Materials</i> , 2012 , 24, 4528-33	24	196
129	Plasma Synthesis of Surface-Functionalized Graphene-Based Platinum Nanoparticles: Highly Active Electrocatalysts as Electrodes for Direct Methanol Fuel Cells. <i>ChemPlusChem</i> , 2012 , 77, 432-436	2.8	27
128	Uniform hexagonal graphene flakes and films grown on liquid copper surface. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 7992-6	11.5	351
127	Single crystal field-effect transistors containing a pentacene analogue and their application in ethanol vapor detection. <i>Applied Physics Letters</i> , 2012 , 101, 103302	3.4	25
126	Growth of large-size-two-dimensional crystalline pentacene grains for high performance organic thin film transistors. <i>AIP Advances</i> , 2012 , 2, 022138	1.5	5
125	Controlled growth and assembly of one-dimensional ordered nanostructures of organic functional materials. <i>Soft Matter</i> , 2011 , 7, 1615-1630	3.6	45
124	Solution-processed, high-performance nanoribbon transistors based on dithioperylene. <i>Journal of the American Chemical Society</i> , 2011 , 133, 1-3	16.4	239
123	Recent progress of high performance organic thin film field-effect transistors. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11708		61
122	9-Alkylidene-9H-Fluorene-Containing Polymer for High-Efficiency Polymer Solar Cells. <i>Macromolecules</i> , 2011 , 44, 7617-7624	5.5	95
121	A Copolymer of Benzodithiophene with TIPS Side Chains for Enhanced Photovoltaic Performance. <i>Macromolecules</i> , 2011 , 44, 9173-9179	5.5	57
120	New X-shaped oligothiophenes for solution-processed solar cells. <i>Journal of Materials Chemistry</i> , 2011 , 21, 9667		31
119	Organic single crystalline micro- and nanowires field-effect transistors of a tetrathiafulvalene (TTF) derivative with strong lorbits and S?S interactions. <i>Synthetic Metals</i> , 2011 , 161, 136-142	3.6	11
118	Experimental techniques for the fabrication and characterization of organic thin films for field-effect transistors. <i>Chemical Reviews</i> , 2011 , 111, 3358-406	68.1	215

117	Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. <i>Nano Research</i> , 2011 , 4, 1208-1214	10	106
116	A new pseudo rubrene analogue with excellent film forming ability. <i>Science China Chemistry</i> , 2011 , 54, 631-635	7.9	3
115	Thiazolothiazole-containing polythiophenes with low HOMO level and high hole mobility for polymer solar cells. <i>Journal of Polymer Science Part A</i> , 2011 , 49, 4875-4885	2.5	24
114	Organic nanowire crystals combine excellent device performance and mechanical flexibility. <i>Small</i> , 2011 , 7, 189-93	11	41
113	Organic Nanowires: Organic Nanowire Crystals Combine Excellent Device Performance and Mechanical Flexibility (Small 2/2011). <i>Small</i> , 2011 , 7, 162-162	11	
112	Inkjet-Printed Organic Electrodes for Bottom-Contact Organic Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2011 , 21, 786-791	15.6	26
111	Millimeter-sized molecular monolayer two-dimensional crystals. Advanced Materials, 2011, 23, 2059-63	24	171
110	All-solution-processed, high-performance n-channel organic transistors and circuits: toward low-cost ambient electronics. <i>Advanced Materials</i> , 2011 , 23, 2448-53	24	164
109	High-performance organic single-crystal field-effect transistors of indolo[3,2-b]carbazole and their potential applications in gas controlled organic memory devices. <i>Advanced Materials</i> , 2011 , 23, 5075-80, 5074	24	72
108	Mica, a potential two-dimensional-crystal gate insulator for organic field-effect transistors. <i>Advanced Materials</i> , 2011 , 23, 5502-7	24	73
107	Organic Field-Effect Transistors: High-Performance Organic Single-Crystal Field-Effect Transistors of Indolo[3,2-b]carbazole and Their Potential Applications in Gas Controlled Organic Memory Devices (Adv. Mater. 43/2011). <i>Advanced Materials</i> , 2011 , 23, 5074-5074	24	3
106	Controlling Molecular Packing for Charge Transport in Organic Thin Films. <i>Advanced Energy Materials</i> , 2011 , 1, 188-193	21.8	33
105	Single crystal n-channel field effect transistors from solution-processed silylethynylated tetraazapentacene. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15201		46
104	Morphology control for high performance organic thin film transistors. <i>Chemical Science</i> , 2011 , 2, 590-6	09.4	93
103	Physicochemical, self-assembly and field-effect transistor properties of anti- and syn- thienoacene isomers. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11335		18
102	Nonvolatile memory effect of a functional polyimide containing ferrocene as the electroactive moiety. <i>Applied Physics Letters</i> , 2011 , 98, 203302	3.4	38
101	Graphene and graphene oxide nanogap electrodes fabricated by atomic force microscopy nanolithography. <i>Applied Physics Letters</i> , 2010 , 97, 133301	3.4	57
100	Template-free solution growth of highly regular, crystal orientation-ordered C60 nanorod bundles. Journal of Materials Chemistry, 2010 , 20, 953-956		21

(2010-2010)

99	High performance organic semiconductors for field-effect transistors. <i>Chemical Communications</i> , 2010 , 46, 5211-22	5.8	285
98	Polymer brush and inorganic oxide hybrid nanodielectrics for high performance organic transistors. Journal of Physical Chemistry B, 2010 , 114, 5315-9	3.4	36
97	Dibenzothiophene Derivatives: From Herringbone to Lamellar Packing Motif. <i>Crystal Growth and Design</i> , 2010 , 10, 4155-4160	3.5	69
96	Assembled Organic/Inorganic pl Junction Interface and Photovoltaic Cell on a Single Nanowire. Journal of Physical Chemistry Letters, 2010 , 1, 327-330	6.4	129
95	Solution-based fabrication of single-crystalline arrays of organic nanowires. <i>Langmuir</i> , 2010 , 26, 1130-6	4	48
94	Micro- and nanocrystals of organic semiconductors. <i>Accounts of Chemical Research</i> , 2010 , 43, 529-40	24.3	334
93	Synthesis, self-assembly, and solution-processed nanoribbon field-effect transistor of a fused-nine-ring thienoacene. <i>Chemical Communications</i> , 2010 , 46, 2841-3	5.8	33
92	Tuning intermolecular non-covalent interactions for nanowires of organic semiconductors. <i>Nanoscale</i> , 2010 , 2, 2652-6	7.7	22
91	Single crystal ribbons and transistors of a solution processed sickle-like fused-ring thienoacene. Journal of Materials Chemistry, 2010 , 20, 6014		35
90	High performance ultraviolet photodetectors based on an individual Zn2SnO4 single crystalline nanowire. <i>Journal of Materials Chemistry</i> , 2010 , 20, 9858		39
89	Mobility dependence on the conducting channel dimension of organic field-effect transistors based on single-crystalline nanoribbons. <i>Journal of Materials Chemistry</i> , 2010 , 20, 7029		41
88	Organic single-crystalline p-n junction nanoribbons. <i>Journal of the American Chemical Society</i> , 2010 , 132, 11580-4	16.4	181
87	Development of organic field-effect properties by introducing aryl-acetylene into benzodithiophene. <i>Journal of Materials Chemistry</i> , 2010 , 20, 10931		24
86	Blending induced stack-ordering and performance improvement in a solution-processed n-type organic field-effect transistor. <i>Journal of Materials Chemistry</i> , 2010 , 20, 1203-1207		26
85	Biphase micro/nanometer sized single crystals of organic semiconductors: Control synthesis and their strong phase dependent optoelectronic properties. <i>Applied Physics Letters</i> , 2010 , 96, 143302	3.4	44
84	Organic single crystal field-effect transistors: advances and perspectives. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4994		141
83	Organic single crystals or crystalline micro/nanostructures: Preparation and field-effect transistor applications. <i>Science China Chemistry</i> , 2010 , 53, 1225-1234	7.9	6
82	High-Performance Phototransistors Based on Organic Microribbons Prepared by a Solution Self-Assembly Process. <i>Advanced Functional Materials</i> , 2010 , 20, 1019-1024	15.6	116

81	"Water strider" legs with a self-assembled coating of single-crystalline nanowires of an organic semiconductor. <i>Advanced Materials</i> , 2010 , 22, 376-9	24	57
80	Organic single crystal field-effect transistors based on 6H-pyrrolo[3,2-b:4,5-b]bis[1,4]benzothiazine and its derivatives. <i>Advanced Materials</i> , 2010 , 22, 2458-62	24	48
79	Electric current induced reduction of graphene oxide and its application as gap electrodes in organic photoswitching devices. <i>Advanced Materials</i> , 2010 , 22, 5008-12	24	81
78	Hybrid bipolar transistors and inverters of nanoribbon crystals. <i>Applied Physics Letters</i> , 2009 , 94, 20330	43.4	15
77	Langmuir B logett monolayer transistors of copper phthalocyanine. <i>Applied Physics Letters</i> , 2009 , 95, 033304	3.4	21
76	Single crystalline microribbons of perylo[1,12-b,c,d]selenophene for high performance transistors. <i>Applied Physics Letters</i> , 2009 , 94, 153306	3.4	46
75	Metastable Copper-Phthalocyanine Single-Crystal Nanowires and Their Use in Fabricating High-Performance Field-Effect Transistors. <i>Advanced Functional Materials</i> , 2009 , 19, 3776-3780	15.6	75
74	Battery Drivable Organic Single-Crystalline Transistors Based on Surface Grafting Ultrathin Polymer Dielectric. <i>Advanced Functional Materials</i> , 2009 , 19, 2987-2991	15.6	28
73	Micrometer- and Nanometer-Sized, Single-Crystalline Ribbons of a Cyclic Triphenylamine Dimer and Their Application in Organic Transistors. <i>Advanced Materials</i> , 2009 , 21, 1605-1608	24	19
72	High-Performance Organic Single-Crystal Transistors and Digital Inverters of an Anthracene Derivative. <i>Advanced Materials</i> , 2009 , 21, 3649-3653	24	115
71	Micrometer-Sized Organic Single Crystals, Anisotropic Transport, and Field-Effect Transistors of a Fused-Ring Thienoacene. <i>Advanced Materials</i> , 2009 , 21, 4492-4495	24	100
70	Assembly of Nanoscale Organic Single-Crystal Cross-Wire Circuits. Advanced Materials, 2009, 21, 4234-4	12:347	99
69	Field-effect transistor chemical sensors of single nanoribbon of copper phthalocyanine. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 751-754		26
68	Tuning reaction processes for the synthesis of micron and nanometer sized, single crystalline lamellae of copper 7,7,8,8-tetracyano-p-quinodimethane (Phase II) with large area. <i>Nano Research</i> , 2009 , 2, 630-637	10	13
67	Water-controlled synthesis of low-dimensional molecular crystals and the fabrication of a new water and moisture indicator. <i>Nano Research</i> , 2009 , 2, 857-864	10	15
66	High-Performance, Stable Organic Field-Effect Transistors Based on trans-1,2-(Dithieno[2,3-b:3?,2?-d]thiophene)ethene. <i>Chemistry of Materials</i> , 2009 , 21, 1993-1999	9.6	100
65	Nanowire crystals of a rigid rod conjugated polymer. <i>Journal of the American Chemical Society</i> , 2009 , 131, 17315-20	16.4	123
64	Molecular orientation and field-effect transistors of a rigid rod conjugated polymer thin films. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 4176-80	3.4	33

(2008-2009)

63	Cruciforms: Assembling Single Crystal Micro- and Nanostructures from One to Three Dimensions and Their Applications in Organic Field-Effect Transistors. <i>Chemistry of Materials</i> , 2009 , 21, 2840-2845	9.6	89
62	Micro-organic single crystalline phototransistors of 7,7,8,8-tetracyanoquinodimethane and tetrathiafulvalene. <i>Applied Physics Letters</i> , 2009 , 94, 123308	3.4	42
61	Langmuir-Blodgett monolayer as an efficient p-conducting channel of ambipolar organic transistors and a template for n-type molecular alignment. <i>Langmuir</i> , 2009 , 25, 3349-51	4	31
60	Polymer reptation for molecular assembly of copper phthalocyanine. <i>Applied Physics Letters</i> , 2009 , 95, 113301	3.4	11
59	Synthesis, packing arrangement and transistor performance of dimers of dithienothiophenes. Journal of Materials Chemistry, 2009 , 19, 8216		30
58	New type of organic semiconductors for field-effect transistors with carbon-carbon triple bonds. Journal of Materials Chemistry, 2009 , 19, 1477		39
57	Optimizing molecular orientation for high performance organic thin film transistors based on titanyl phthalocyanine. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5507		9
56	Air-stable ambipolar field-effect transistors based on copper phthalocyanine and tetracyanoquinodimethane. <i>Research on Chemical Intermediates</i> , 2008 , 34, 147-153	2.8	2
55	Light-controlled organic/inorganic P-N junction nanowires. <i>Journal of the American Chemical Society</i> , 2008 , 130, 9198-9	16.4	151
54	Single-crystalline, size, and orientation controllable nanowires and ultralong microwires of organic semiconductor with strong photoswitching property. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3937-41	16.4	122
53	Air-stable ambipolar organic field-effect transistor based on a novel bi-channel structure. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2420		17
52	6H-Pyrrolo[3,2-b:4,5-b?]bis[1,4]benzothiazines: facilely synthesized semiconductors for organic field-effect transistors. <i>Journal of Materials Chemistry</i> , 2008 , 18, 4814		27
51	Ordering rigid rod conjugated polymer molecules for high performance photoswitchers. <i>Langmuir</i> , 2008 , 24, 13241-4	4	47
50	Organic thin-film transistors of phthalocyanines. <i>Pure and Applied Chemistry</i> , 2008 , 80, 2231-2240	2.1	66
49	Air/vacuum dielectric organic single crystalline transistors of copper-hexadecafluorophthalocyanine ribbons. <i>Applied Physics Letters</i> , 2008 , 92, 083309	3.4	33
48	Electroplating silver tetracyanoquinodimethane between gold micro-gap electrodes for the fabrication of coplanar devices, a new way to integrate material synthesis and devices fabrication within one step. <i>Applied Physics A: Materials Science and Processing</i> , 2008 , 91, 301-303	2.6	7
47	High-Performance Air-Stable Bipolar Field-Effect Transistors of Organic Single-Crystalline Ribbons with an Air-Gap Dielectric. <i>Advanced Materials</i> , 2008 , 20, 1511-1515	24	126
46	Organic Single-Crystalline Ribbons of a Rigid "H"-type Anthracene Derivative and High-Performance, Short-Channel Field-Effect Transistors of Individual Micro/Nanometer-Sized Ribbons Fabricated by an "Organic Ribbon Mask" Technique. <i>Advanced Materials</i> , 2008 , 20, 2735-40	24	150

45	Dibenzothiophene derivatives as new prototype semiconductors for organic field-effect transistors. <i>Journal of Materials Chemistry</i> , 2007 , 17, 1421		53
44	A non-planar organic molecule with non-volatile electrical bistability for nano-scale data storage. Journal of Materials Chemistry, 2007 , 17, 3530		26
43	Tetrathia[22]annulene[2,1,2,1]: physical properties, crystal structure and application in organic field-effect transistors. <i>Journal of Materials Chemistry</i> , 2007 , 17, 4377		37
42	High-performance transistor based on individual single-crystalline micrometer wire of perylo[1,12-b,c,d]thiophene. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1882-3	16.4	134
41	Phase dependence of single crystalline transistors of tetrathiafulvalene. <i>Applied Physics Letters</i> , 2007 , 91, 123505	3.4	79
40	Small Molecular Chromogenic Sensors for Hg2+: A Strong P ush-Pull \(\bar{\B}\) ystem Exists after Binding. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 2459-2463	3.2	33
39	A new morphology of copper 7,7,8,8-tetracyano-p-quinodimethane. <i>Micron</i> , 2007 , 38, 536-42	2.3	13
38	Surface nanostructures orienting self-protection of an orthodontic nickel-titanium shape memory alloys wire. <i>Science Bulletin</i> , 2007 , 52, 3020-3023		2
37	Progresses in organic field-effect transistors and molecular electronics. <i>Frontiers of Chemistry in China: Selected Publications From Chinese Universities</i> , 2006 , 1, 357-363		1
36	Electron transport in self-assembled polymer molecular junctions. <i>Physical Review Letters</i> , 2006 , 96, 02	7 8 041	68
35	Organic thin-film transistors with high mobilities and low operating voltages based on 5,5?-bis-biphenyl-dithieno[3,2-b:2?,3?-d]thiophene semiconductor and polymer gate dielectric. <i>Applied Physics Letters</i> , 2006 , 88, 242113	3.4	40
34	Controlling the growth of single crystalline nanoribbons of copper tetracyanoquinodimethane for the fabrication of devices and device arrays. <i>Journal of the American Chemical Society</i> , 2006 , 128, 12917	- 1 5.4	97
33	High-performance air-stable n-type transistors with an asymmetrical device configuration based on organic single-crystalline submicrometer/nanometer ribbons. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14634-9	16.4	231
32	Advancing conjugated polymers into nanometer-scale devices. <i>Pure and Applied Chemistry</i> , 2006 , 78, 1803-1822	2.1	8
31	Synthesis and characterization of new type molecular wires with tetrathiafulvalene as redox center. Journal of Polymer Science Part A, 2006, 44, 2707-2713	2.5	11
30	A self-assembled nano optical switch and transistor based on a rigid conjugated polymer, thioacetyl-end-functionalized poly(para-phenylene ethynylene). <i>Journal of the American Chemical Society</i> , 2005 , 127, 2804-5	16.4	75
29	Organic thin film transistors based on stable amorphous ladder tetraazapentacenes semiconductors. <i>Journal of Materials Chemistry</i> , 2005 , 15, 4894		61
28	Kondo effect in quantum dots and molecular devices. <i>Science Bulletin</i> , 2005 , 50, 2132-2139		2

(-2000)

27	The gas sensitivity of a metal-insulator-semiconductor field-effect-transistor based on Langmuir B lodgett films of a new asymmetrically substituted phthalocyanine. <i>Thin Solid Films</i> , 2000 , 360, 256-260	2.2	51	
26	An Organic Field-Effect-Transistor Based on Langmuir-Blodgett Films of a New Asymmetrically Substituted Phthalocyanine, 1,8-Naphthaimide-Tri-Tert-Butylphthalocyanine. <i>Molecular Crystals and Liquid Crystals</i> , 1999 , 337, 511-514		5	
25	The application of Langmuir B lodgett films of a new asymmetrically substituted phthalocyanine, amino-tri-tert-butyl-phthalocyanine, in diodes and in all organic field-effect-transistors. <i>Synthetic Metals</i> , 1999 , 104, 19-26	3.6	33	
24	Polycyclic aromatic hydrocarbon-based organic semiconductors: ring-closing synthesis and optoelectronic properties. <i>Journal of Materials Chemistry C</i> ,	7.1	5	
23	Recent Advances in Growth of Transition Metal Carbides and Nitrides (MXenes) Crystals. <i>Advanced Functional Materials</i> ,2111357	15.6	7	
22	Soft template-assisted self-assembly: a general strategy toward two-dimensional molecular crystals for high-performance organic field-effect transistors. <i>Journal of Materials Chemistry C</i> ,	7.1	1	
21	A Centrosymmetric Organic Semiconductor with Donor Acceptor Interaction for Highly Photostable Organic Transistors. <i>Advanced Functional Materials</i> ,2111705	15.6	0	
20	Cocrystal engineering for constructing two-photon absorption materials by controllable intermolecular interactions. <i>Journal of Materials Chemistry C</i> ,	7.1	3	
19	Self-Assembly Graphene Arrays on a Liquid CuAg Alloy. Chemistry of Materials,	9.6	1	
18	Heterochelation boosts sodium storage in 덦 conjugated coordination polymers. <i>Energy and Environmental Science</i> ,	35.4	4	
17	Thermally-enhanced photo-electric response of an organic semiconductor with low exciton binding energy for simultaneous and distinguishable detection of light and temperature. <i>Science China Chemistry</i> ,1	7.9	0	
16	The prospects of organic semiconductor single crystals for spintronic applications. <i>Journal of Materials Chemistry C</i> ,	7.1	4	
15	Low-voltage polymer-dielectric-based organic field-effect transistors and applications. <i>Nano Select</i> ,	3.1	5	
14	Few-layered two-dimensional molecular crystals for organic artificial visual memories with record-high photoresponse. <i>Journal of Materials Chemistry C</i> ,	7.1	5	
13	The way towards for ultraflat and superclean graphene. Nano Select,	3.1	1	
12	Few-layered organic single-crystalline heterojunctions for high-performance phototransistors. Nano Research,1	10	5	
11	Bimetallic phthalocyanine heterostructure used for highly selective electrocatalytic CO2 reduction. <i>Science China Materials</i> ,1	7.1	8	
10	Organic Field Effect Transistor-Based Photonic Synapses: Materials, Devices, and Applications. Advanced Functional Materials,2106151	15.6	14	

9	Controllable growth of centimeter-scale 2D crystalline conjugated polymers for photonic synaptic transistors. <i>Journal of Materials Chemistry C</i> ,	7.1	3
8	Reaction Site Exchange in Hierarchical Bimetallic Mn/Ni Catalyst Triggered by Electron Pump Effect to Boost Urea Electrocatalytic Oxidation. <i>Journal of Materials Chemistry A</i> ,	13	3
7	Recent Progress in Polymer-based Infrared Photodetectors. Journal of Materials Chemistry C,	7.1	O
6	Electrocatalytic Reduction of Nitrogen to Ammonia in Ionic Liquids. <i>ACS Sustainable Chemistry and Engineering</i> ,	8.3	4
5	Selectivity regulation of CO2 electroreduction on asymmetric AuAgCu tandem heterostructures. <i>Nano Research</i> ,1	10	О
4	Multi-stage anisotropic etching of two-dimensional heterostructures. <i>Nano Research</i> ,1	10	2
3	Construction and nanotribological study of a glassy covalent organic network on surface. <i>Nano Research</i> ,1	10	
2	Near-Amorphous Conjugated Polymers: An Emerging Class of Semiconductors for Flexible Electronics	:1112-1	123
1	Fluorinated Dielectrics-Modulated Organic Phototransistors and Flexible Image Sensors. <i>Advanced Optical Materials</i> ,2200614	8.1	2