
Olaf Kutsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3283157/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Host T Cell Dedifferentiation Effects Drive HIV-1 Latency Stability. Journal of Virology, 2022, 96, jvi0197421.	3.4	2
2	Lentiviral Nef Proteins Differentially Govern the Establishment of Viral Latency. Journal of Virology, 2022, , e0220621.	3.4	0
3	Extensive proteomic and transcriptomic changes quench the TCR/CD3 activation signal of latently HIV-1 infected T cells. PLoS Pathogens, 2021, 17, e1008748.	4.7	6
4	Pyrazolyl Thioureas and Carbothioamides with an NNSN Motif against MSSA and MRSA. ACS Omega, 2021, 6, 6088-6099.	3.5	5
5	T-cell immune dysregulation and mortality in women with HIV. Journal of Infectious Diseases, 2021, , .	4.0	4
6	Sustained cellular immune dysregulation in individuals recovering from SARS-CoV-2 infection. Journal of Clinical Investigation, 2021, 131, .	8.2	103
7	A copper-dependent compound restores ampicillin sensitivity in multidrug-resistant Staphylococcus aureus. Scientific Reports, 2020, 10, 8955.	3.3	12
8	Glycan Positioning Impacts HIV-1 Env Glycan-Shield Density, Function, and Recognition by Antibodies. IScience, 2020, 23, 101711.	4.1	4
9	The tetraspanin CD151 marks a unique population of activated human T cells. Scientific Reports, 2020, 10, 15748.	3.3	5
10	Bach2 Negatively Regulates T Follicular Helper Cell Differentiation and Is Critical for CD4+ T Cell Memory. Journal of Immunology, 2019, 202, 2991-2998.	0.8	25
11	Breathing New Life into TRAIL for Breast Cancer Therapy: Co-Delivery of pTRAIL and Complementary siRNAs Using Lipopolymers. Human Gene Therapy, 2019, 30, 1531-1546.	2.7	13
12	The phosphatase PPM1A controls monocyte-to-macrophage differentiation. Scientific Reports, 2018, 8, 902.	3.3	28
13	Regulatory CD4 T cells inhibit HIV-1 expression of other CD4 T cell subsets via interactions with cell surface regulatory proteins. Virology, 2018, 516, 21-29.	2.4	5
14	Antiretroviral therapy potentiates high-fat diet induced obesity and glucose intolerance. Molecular Metabolism, 2018, 12, 48-61.	6.5	17
15	Mycobacterium tuberculosis exploits the PPM1A signaling pathway to block host macrophage apoptosis. Scientific Reports, 2017, 7, 42101.	3.3	39
16	CD151 Expression Is Associated with a Hyperproliferative T Cell Phenotype. Journal of Immunology, 2017, 199, 3336-3347.	0.8	12
17	A High-throughput Compatible Assay to Evaluate Drug Efficacy against Macrophage Passaged Mycobacterium tuberculosis . Journal of Visualized Experiments, 2017, , .	0.3	0
18	8-Hydroxyquinolines Are Boosting Agents of Copper-Related Toxicity in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 5765-5776.	3.2	54

OLAF KUTSCH

#	Article	IF	CITATIONS
19	A Macrophage Infection Model to Predict Drug Efficacy Against <i>Mycobacterium Tuberculosis</i> . Assay and Drug Development Technologies, 2016, 14, 345-354.	1.2	20
20	Protein Phosphatase, Mg2+/Mn2+-dependent 1A controls the innate antiviral and antibacterial response of macrophages during HIV-1 and <i>Mycobacterium tuberculosis</i> infection. Oncotarget, 2016, 7, 15394-15409.	1.8	24
21	Disulfiram and Copper Ions Kill Mycobacterium tuberculosis in a Synergistic Manner. Antimicrobial Agents and Chemotherapy, 2015, 59, 4835-4844.	3.2	72
22	Stable Phenotypic Changes of the Host T Cells Are Essential to the Long-Term Stability of Latent HIV-1 Infection. Journal of Virology, 2015, 89, 6656-6672.	3.4	22
23	RNAP II processivity is a limiting step for HIV-1 transcription independent of orientation to and activity of endogenous neighboring promoters. Virology, 2015, 486, 7-14.	2.4	8
24	The host cell side of latent HIV-1 infection. Oncotarget, 2015, 6, 19920-19921.	1.8	4
25	Kinase Control of Latent HIV-1 Infection: PIM-1 Kinase as a Major Contributor to HIV-1 Reactivation. Journal of Virology, 2014, 88, 364-376.	3.4	36
26	Copper Complexation Screen Reveals Compounds with Potent Antibiotic Properties against Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2014, 58, 3727-3736.	3.2	55
27	An AP-1 Binding Site in the Enhancer/Core Element of the HIV-1 Promoter Controls the Ability of HIV-1 To Establish Latent Infection. Journal of Virology, 2013, 87, 2264-2277.	3.4	83
28	Selected Drugs with Reported Secondary Cell-Differentiating Capacity Prime Latent HIV-1 Infection for Reactivation. Journal of Virology, 2012, 86, 9055-9069.	3.4	21
29	Kinase Control Prevents HIV-1 Reactivation in Spite of High Levels of Induced NF-ήB Activity. Journal of Virology, 2012, 86, 4548-4558.	3.4	32
30	Determinants of the Establishment of Human Immunodeficiency Virus Type 1 Latency. Journal of Virology, 2009, 83, 3078-3093.	3.4	102
31	High Throughput Drug Screening for Human Immunodeficiency Virus Type 1 Reactivating Compounds. Assay and Drug Development Technologies, 2007, 5, 181-190.	1.2	20
32	Nef-Mediated Suppression of T Cell Activation Was Lost in a Lentiviral Lineage that Gave Rise to HIV-1. Cell, 2006, 125, 1055-1067.	28.9	359
33	Bis-Anthracycline Antibiotics Inhibit Human Immunodeficiency Virus Type 1 Transcription. Antimicrobial Agents and Chemotherapy, 2004, 48, 1652-1663.	3.2	33
34	Dynamics of HIV-1 recombination in its natural target cells. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4204-4209.	7.1	407
35	Direct and Quantitative Single-Cell Analysis of Human Immunodeficiency Virus Type 1 Reactivation from Latency. Journal of Virology, 2002, 76, 8776-8786.	3.4	162