Huicong Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3282805/publications.pdf

Version: 2024-02-01

516710 677142 2,227 23 16 22 h-index citations g-index papers 23 23 23 2905 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Co ₂ P–CoN Double Active Centers Confined in Nâ€Doped Carbon Nanotube: Heterostructural Engineering for Trifunctional Catalysis toward HER, ORR, OER, and Zn–Air Batteries Driven Water Splitting. Advanced Functional Materials, 2018, 28, 1805641.	14.9	443
2	Carbon Nanosheets Containing Discrete Co-N _{<i>x</i>} -B _{<i>y</i>} -C Active Sites for Efficient Oxygen Electrocatalysis and Rechargeable Znâ€"Air Batteries. ACS Nano, 2018, 12, 1894-1901.	14.6	419
3	Sulfuration of an Fe–N–C Catalyst Containing Fe <i>_×</i> C/Fe Species to Enhance the Catalysis of Oxygen Reduction in Acidic Media and for Use in Flexible Zn–Air Batteries. Advanced Materials, 2018, 30, e1804504.	21.0	269
4	2D MOF Nanoflake-Assembled Spherical Microstructures for Enhanced Supercapacitor and Electrocatalysis Performances. Nano-Micro Letters, 2017, 9, 43.	27.0	234
5	Defect Engineering on Carbon-Based Catalysts for Electrocatalytic CO2 Reduction. Nano-Micro Letters, 2021, 13, 5.	27.0	118
6	Phosphorus-Driven Electron Delocalization on Edge-Type FeN ₄ Active Sites for Oxygen Reduction in Acid Medium. ACS Catalysis, 2021, 11, 12754-12762.	11.2	98
7	CoS ₂ nanodots trapped within graphitic structured N-doped carbon spheres with efficient performances for lithium storage. Journal of Materials Chemistry A, 2018, 6, 7148-7154.	10.3	82
8	Recent Progress on Two-Dimensional Nanoflake Ensembles for Energy Storage Applications. Nano-Micro Letters, 2018, 10, 66.	27.0	71
9	Two-dimensional amorphous heterostructures of Ag/a-WO3- for high-efficiency photocatalytic performance. Applied Catalysis B: Environmental, 2019, 245, 648-655.	20.2	69
10	Fabrication of Fe-doped Co-MOF with mesoporous structure for the optimization of supercapacitor performances. Chinese Chemical Letters, 2018, 29, 834-836.	9.0	64
11	Boosting Nitrogen Reduction to Ammonia on FeN ₄ Sites by Atomic Spin Regulation. Advanced Science, 2021, 8, e2102915.	11.2	64
12	Rational confinement engineering of <scp>MOF</scp> â€derived carbonâ€based electrocatalysts toward <scp>CO₂</scp> reduction and <scp>O₂</scp> reduction reactions. InformaÄnÃ-Materiály, 2022, 4, .	17.3	58
13	Atomic Level Dispersed Metal–Nitrogen–Carbon Catalyst toward Oxygen Reduction Reaction: Synthesis Strategies and Chemical Environmental Regulation. Energy and Environmental Materials, 2021, 4, 5-18.	12.8	55
14	Boronâ€Tethering and Regulative Electronic States Around Iridium Species for Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .	14.9	35
15	Evolution of a solid electrolyte interphase enabled by FeN _{<i>X</i>} /C catalysts for sodium-ion storage. Energy and Environmental Science, 2022, 15, 771-779.	30.8	34
16	Concave Pt–Zn Nanocubes with Highâ€Index Faceted Pt Skin as Highly Efficient Oxygen Reduction Catalyst. Advanced Science, 2022, 9, e2200147.	11.2	25
17	Inactivating SARS-CoV-2 by electrochemical oxidation. Science Bulletin, 2021, 66, 720-726.	9.0	18
18	1D Cu(OH)2 nanorod/2D SnO2 nanosheets core/shell structured array: Covering with graphene layer leads to excellent performances on lithium-ion battery. Applied Surface Science, 2018, 440, 91-98.	6.1	16

#	Article	IF	CITATION
19	Atomically dispersed metal active centers as a chemically tunable platform for energy storage devices. Journal of Materials Chemistry A, 2020, 8, 15358-15372.	10.3	16
20	Probing the active sites of 2D nanosheets with Fe-N-C carbon shell encapsulated FexC/Fe species for boosting sodium-ion storage performances. Nano Research, 2022, 15, 7154-7162.	10.4	14
21	The assembling principle and strategies of high-density atomically dispersed catalysts. Chemical Engineering Journal, 2021, 417, 127917.	12.7	13
22	Interfacial engineering of Ag nanodots/MoSe2 nanoflakes/Cu(OH)2 hybrid-electrode for lithium-ion battery. Journal of Colloid and Interface Science, 2019, 557, 635-643.	9.4	12
23	Supercapacitors. , 2021, , 143-164.		0