Prasun Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3282160/publications.pdf

Version: 2024-02-01

279701 377752 2,307 46 23 34 h-index citations g-index papers 50 50 50 1878 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Extending the limits of Bacillus for novel biotechnological applications. Biotechnology Advances, 2013, 31, 1543-1561.	6.0	212
2	Evolution of Resistance to Quorum-Sensing Inhibitors. Microbial Ecology, 2014, 68, 13-23.	1.4	151
3	Fatty Acids as Antibiofilm and Antivirulence Agents. Trends in Microbiology, 2020, 28, 753-768.	3.5	132
4	Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresource Technology, 2015, 176, 136-141.	4.8	129
5	Challenges and Opportunities for Customizing Polyhydroxyalkanoates. Indian Journal of Microbiology, 2015, 55, 235-249.	1.5	126
6	Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. International Journal of Biological Macromolecules, 2015, 78, 9-16.	3.6	114
7	Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass and Bioenergy, 2012, 36, 218-225.	2.9	98
8	Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. International Journal of Hydrogen Energy, 2014, 39, 14663-14668.	3.8	97
9	Ecobiotechnological Approach for Exploiting the Abilities of Bacillus to Produce Co-polymer of Polyhydroxyalkanoate. Indian Journal of Microbiology, 2014, 54, 151-157.	1.5	88
10	Production of Polyhydroxyalkanoate Co-polymer by Bacillus thuringiensis. Indian Journal of Microbiology, 2013, 53, 77-83.	1.5	87
11	Production of co-polymers of polyhydroxyalkanoates by regulating the hydrolysis of biowastes. Bioresource Technology, 2016, 200, 413-419.	4.8	83
12	Electro-Fermentation in Aid of Bioenergy and Biopolymers. Energies, 2018, 11, 343.	1.6	80
13	Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresource Technology, 2015, 182, 383-388.	4.8	79
14	Valorization of polyhydroxyalkanoates production process by co-synthesis of value-added products. Bioresource Technology, 2018, 269, 544-556.	4.8	77
15	Biodiesel Industry Waste: A Potential Source of Bioenergy and Biopolymers. Indian Journal of Microbiology, 2015, 55, 1-7.	1.5	76
16	Enhancing biological hydrogen production through complementary microbial metabolisms. International Journal of Hydrogen Energy, 2012, 37, 10590-10603.	3.8	74
17	Ecobiotechnological Strategy to Enhance Efficiency of Bioconversion of Wastes into Hydrogen and Methane. Indian Journal of Microbiology, 2014, 54, 262-267.	1.5	64
18	Co-production of polyhydroxyalkanoates and carotenoids through bioconversion of glycerol by Paracoccus sp. strain LL1. International Journal of Biological Macromolecules, 2018, 107, 2552-2558.	3.6	51

#	Article	IF	CITATIONS
19	Diverse roles of microbial indole compounds in eukaryotic systems. Biological Reviews, 2021, 96, 2522-2545.	4.7	48
20	A Genome-Wide Profiling Strategy as an Aid for Searching Unique Identification Biomarkers for Streptococcus. Indian Journal of Microbiology, 2016, 56, 46-58.	1.5	35
21	Genome Wide Search for Biomarkers to Diagnose Yersinia Infections. Indian Journal of Microbiology, 2015, 55, 366-374.	1.5	30
22	Bioconversion of lignin and its derivatives into polyhydroxyalkanoates: Challenges and opportunities. Biotechnology and Applied Biochemistry, 2019, 66, 153-162.	1.4	29
23	Genome Wide Analysis for Searching Novel Markers to Rapidly Identify Clostridium Strains. Indian Journal of Microbiology, 2015, 55, 250-257.	1.5	24
24	Genome Wide Analysis for Rapid Identification of Vibrio Species. Indian Journal of Microbiology, 2015, 55, 375-383.	1.5	24
25	<i>clpC</i> operon regulates cell architecture and sporulation in <i>Bacillus anthracis</i> Environmental Microbiology, 2015, 17, 855-865.	1.8	22
26	Searching Biomarkers in the Sequenced Genomes of Staphylococcus for their Rapid Identification. Indian Journal of Microbiology, 2016, 56, 64-71.	1.5	22
27	Biofouling Control by Quorum Quenching. , 2015, , 431-440.		21
28	Heterologous Expression of Quorum Sensing Inhibitory Genes in Diverse Organisms., 2015,, 343-356.		21
29	Potential Applications of Quorum Sensing Inhibitors in Diverse Fields. , 2015, , 359-370.		20
30	Polyhydroxyalcanoates (PHAs) in Industrial Applications. , 2017, , 1-30.		20
31	The Battle: Quorum-Sensing Inhibitors Versus Evolution of Bacterial Resistance., 2015,, 385-391.		19
32	Integrative Approach for Biohydrogen and Polyhydroxyalkanoate Production., 2015,, 73-85.		19
33	A Unique Genome Wide Approach to Search Novel Markers for Rapid Identification of Bacterial Pathogens. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2015, 09, .	0.1	17
34	Coâ€fermentation of agricultural and industrial waste by <i>Naganishia albida</i> for microbial lipid production in fedâ€batch fermentation. Journal of Chemical Technology and Biotechnology, 2020, 95, 813-821.	1.6	17
35	Microbial Conversion of Vegetable Oil to Hydroxy Fatty Acid and Its Application to Bio-Based Polyurethane Synthesis. Polymers, 2018, 10, 927.	2.0	14
36	Lipid production by Cryptococcus albidus using biowastes hydrolysed by indigenous microbes. Bioprocess and Biosystems Engineering, 2019, 42, 687-696.	1.7	13

#	Article	IF	CITATIONS
37	Polyhydroxyalkanoates (PHAs) in Industrial Applications. , 2019, , 2843-2872.		11
38	Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms. Microorganisms, 2021, 9, 2156.	1.6	11
39	Biotechnology in Aid of Biodiesel Industry Effluent (Glycerol): Biofuels and Bioplastics. , 2015, , 105-119.		10
40	Polyhydroxyalkanoates (PHAs) in Industrial Applications. , 2018, , 1-30.		6
41	Bioâ€Based Polyurethanes from Microbially Converted Castor Oil. JAOCS, Journal of the American Oil Chemists' Society, 2019, 96, 715-726.	0.8	5
42	Bioaugmentation with existing potent microorganisms to accelerate the treatment efficacy of paper industry wastewater pollutants. Journal of Environmental Chemical Engineering, 2021, 9, 105913.	3.3	5
43	Use of Probiotic Bacteria and Their Bioactive Compounds for Wound Care. , 2021, , 301-330.		2
44	Applications of Bio-electrochemical Systems in Heavy Metal Removal and Recovery., 2020,, 235-256.		2
45	Aquatic Weeds: A Potential Pollutant Removing Agent from Wastewater and Polluted Soil and Valuable Biofuel Feedstock. Energy, Environment, and Sustainability, 2021, , 59-77.	0.6	1
46	Co-production of polyhydroxyalkanoates and carotenoids by Paracoccus sp. strain LL1. New Biotechnology, 2018, 44, S122.	2.4	0