Jan Jakob Wilkens

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3281808/jan-jakob-wilkens-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

118 2,761 31 49 g-index

134 3,246 avg, IF 5.2 L-index

#	Paper	IF	Citations
118	Deep Learning Based GTV Delineation and Progression Free Survival Risk Score Prediction for [Head and Neck Cancer Patients. <i>Lecture Notes in Computer Science</i> , 2022 , 150-159	0.9	
117	X-ray Dark-Field CT for Early Detection of Radiation-induced Lung Injury in a Murine Model <i>Radiology</i> , 2022 , 212332	20.5	0
116	A comprehensive Monte Carlo study of out-of-field secondary neutron spectra in a scanned-beam proton therapy gantry room. <i>Zeitschrift Fur Medizinische Physik</i> , 2021 , 31, 215-228	7.6	3
115	Establishment of Microbeam Radiation Therapy at a Small-Animal Irradiator. <i>International Journal of Radiation Oncology Biology Physics</i> , 2021 , 109, 626-636	4	1
114	A Five-Year report on the conception and establishment of the MSc Radiation Biology at the Technical University of Munich. <i>International Journal of Radiation Biology</i> , 2021 , 97, 256-264	2.9	
113	Early detection of radiation-induced lung damage with X-ray dark-field radiography in mice. <i>European Radiology</i> , 2021 , 31, 4175-4183	8	4
112	Deep Learning Based HPV Status Prediction for Oropharyngeal Cancer Patients. <i>Cancers</i> , 2021 , 13,	6.6	6
111	In-vivo X-ray dark-field computed tomography for the detection of radiation-induced lung damage in mice. <i>Physics and Imaging in Radiation Oncology</i> , 2021 , 20, 11-16	3.1	0
110	Prediction of multi-criteria optimization (MCO) parameter efficiency in volumetric modulated arc therapy (VMAT) treatment planning using machine learning (ML). <i>Physica Medica</i> , 2021 , 81, 102-113	2.7	2
109	Report on planning comparison of VMAT, IMRT and helical tomotherapy for the ESCALOX-trial pre-study. <i>Radiation Oncology</i> , 2020 , 15, 253	4.2	3
108	Neuro-oncology Management During the COVID-19 Pandemic With a Focus on WHO Grade III and IV Gliomas. <i>Neuro-Oncology</i> , 2020 ,	1	39
107	The dosimetric impact of stabilizing spinal implants in radiotherapy treatment planning with protons and photons: standard titanium alloy vs. radiolucent carbon-fiber-reinforced PEEK systems. <i>Journal of Applied Clinical Medical Physics</i> , 2020 , 21, 6-14	2.3	13
106	Simulation and measurement of microbeam dose distribution in lung tissue. <i>Physica Medica</i> , 2020 , 75, 77-82	2.7	2
105	Clinical microbeam radiation therapy with a compact source: specifications of the line-focus X-ray tube. <i>Physics and Imaging in Radiation Oncology</i> , 2020 , 14, 74-81	3.1	1
104	Modeling RBE-weighted dose variations in irregularly moving abdominal targets treated with carbon ion beams. <i>Medical Physics</i> , 2020 , 47, 2768-2778	4.4	3
103	First statement on preparation for the COVID-19 pandemic in large German Speaking University-based radiation oncology departments. <i>Radiation Oncology</i> , 2020 , 15, 74	4.2	32
102	A proof of principle experiment for microbeam radiation therapy at the Munich compact light source. <i>Radiation and Environmental Biophysics</i> , 2020 , 59, 111-120	2	9

(2018-2020)

101	Approximation of dose quality indicator values in multi-criteria optimized (MCO) volumetric modulated arc therapy (VMAT) treatment planning using trilinear dose interpolation. <i>Zeitschrift Fur Medizinische Physik</i> , 2020 , 30, 315-324	7.6	1
100	Technical and dosimetric realization of in vivo x-ray microbeam irradiations at the Munich Compact Light Source. <i>Medical Physics</i> , 2020 , 47, 5183-5193	4.4	2
99	MRI based neuroanatomical segmentation in breast cancer patients: leptomeningeal carcinomatosis vs. oligometastatic brain disease vs. multimetastastic brain disease. <i>Radiation Oncology</i> , 2019 , 14, 170	4.2	3
98	Neoadjuvant image-guided helical intensity modulated radiotherapy of extremity sarcomas - a single center experience. <i>Radiation Oncology</i> , 2019 , 14, 2	4.2	10
97	Deep inspiration breath-hold for left-sided breast irradiation: Analysis of dose-mass histograms and the impact of lung expansion. <i>Radiation Oncology</i> , 2019 , 14, 109	4.2	18
96	Neoadjuvant stereotactic radiosurgery for intracerebral metastases of solid tumors (NepoMUC): a phase I dose escalation trial. <i>Cancer Communications</i> , 2019 , 39, 73	9.4	4
95	Adjuvant versus early salvage radiotherapy: outcome of patients with prostate cancer treated with postoperative radiotherapy after radical prostatectomy. <i>Radiation Oncology</i> , 2019 , 14, 198	4.2	4
94	The Role of Particle Therapy for the Treatment of Skull Base Tumors and Tumors of the Central Nervous System (CNS). <i>Topics in Magnetic Resonance Imaging</i> , 2019 , 28, 49-61	2.3	
93	Beam size limit for pencil minibeam radiotherapy determined from side effects in an in-vivo mouse ear model. <i>PLoS ONE</i> , 2019 , 14, e0221454	3.7	5
92	Early and late toxicity profiles of patients receiving immediate postoperative radiotherapy versus salvage radiotherapy for prostate cancer after prostatectomy. <i>Strahlentherapie Und Onkologie</i> , 2019 , 195, 131-144	4.3	2
91	Application of variance-based uncertainty and sensitivity analysis to biological modeling in carbon ion treatment plans. <i>Medical Physics</i> , 2019 , 46, 437-447	4.4	5
90	Hybrid dose calculation: a dose calculation algorithm for microbeam radiation therapy. <i>Physics in Medicine and Biology</i> , 2018 , 63, 045013	3.8	14
89	ESTRO ACROP: Technology for precision small animal radiotherapy research: Optimal use and challenges. <i>Radiotherapy and Oncology</i> , 2018 , 126, 471-478	5.3	62
88	Radiomics in radiooncology - Challenging the medical physicist. <i>Physica Medica</i> , 2018 , 48, 27-36	2.7	49
87	Dosimetric impact of tumor treating field (TTField) transducer arrays onto treatment plans for glioblastomas - a planning study. <i>Radiation Oncology</i> , 2018 , 13, 31	4.2	7
86	Dosimetric characterization of a single crystal diamond detector in X-ray beams for preclinical research. <i>Zeitschrift Fur Medizinische Physik</i> , 2018 , 28, 303-309	7.6	11
85	MRI-based high-precision irradiation in an orthotopic pancreatic tumor mouse model: Altreatment planning study. <i>Strahlentherapie Und Onkologie</i> , 2018 , 194, 944-952	4.3	8
84	Evaluation of radiation-related invasion in primary patient-derived glioma cells and validation with established cell lines: impact of different radiation qualities with differing LET. <i>Journal of Neuro-Oncology</i> , 2018 , 139, 583-590	4.8	8

83	Dual-layer spectral computed tomography: measuring relative electron density. <i>European Radiology Experimental</i> , 2018 , 2, 20	4.5	16
82	Dose-compatible grating-based phase-contrast mammography on mastectomy specimens using a compact synchrotron source. <i>Scientific Reports</i> , 2018 , 8, 15700	4.9	10
81	Matching the reaction-diffusion simulation to dynamic [F]FMISO PET measurements in tumors: extension to a flow-limited oxygen-dependent model. <i>Physiological Measurement</i> , 2017 , 38, 188-204	2.9	2
80	Do selective radiation dose escalation and tumour hypoxia status impact the loco-regional tumour control after radio-chemotherapy of head & neck tumours? The ESCALOX protocol. <i>Radiation Oncology</i> , 2017 , 12, 45	4.2	23
79	Quantification of the uncertainties of a biological model and their impact on variable RBE proton treatment plan optimization. <i>Physica Medica</i> , 2017 , 36, 91-102	2.7	25
78	Radiolucent Carbon Fiber-Reinforced Pedicle Screws for Treatment of Spinal Tumors: Advantages for Radiation Planning and Follow-Up Imaging. <i>World Neurosurgery</i> , 2017 , 105, 294-301	2.1	60
77	A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams. <i>Physics in Medicine and Biology</i> , 2017 , 62, 5531-5555	3.8	29
76	Rapid implementation of the repair-misrepair-fixation (RMF) model facilitating online adaption of radiosensitivity parameters in ion therapy. <i>Physics in Medicine and Biology</i> , 2017 , 62, N285-N296	3.8	11
75	Systematic out-of-field secondary neutron spectrometry and dosimetry in pencil beam scanning proton therapy. <i>Medical Physics</i> , 2017 , 44, 1912-1920	4.4	7
74	Increased cell survival and cytogenetic integrity by spatial dose redistribution at a compact synchrotron X-ray source. <i>PLoS ONE</i> , 2017 , 12, e0186005	3.7	11
73	Interobserver variability of patient positioning using four different CT datasets for image registration in lung stereotactic body radiotherapy. <i>Strahlentherapie Und Onkologie</i> , 2017 , 193, 831-839	4.3	4
7 ²	BioXmark for high-precision radiotherapy in an orthotopic pancreatic tumor mouse model : Experiences with a liquid fiducial marker. <i>Strahlentherapie Und Onkologie</i> , 2017 , 193, 1039-1047	4.3	10
71	Master of Science (MSc) Program in Radiation Biology: An Interdepartmental Course Bridging the Gap between Radiation-Related Preclinical and Clinical Disciplines to Prepare Next-Generation Medical Scientists. <i>Frontiers in Oncology</i> , 2017 , 7, 226	5.3	3
70	Registration uncertainties between 3D cone beam computed tomography and different reference CT datasets in lung stereotactic body radiation therapy. <i>Radiation Oncology</i> , 2016 , 11, 142	4.2	10
69	Prioritized efficiency optimization for intensity modulated proton therapy. <i>Physics in Medicine and Biology</i> , 2016 , 61, 8249-8265	3.8	4
68	Reduced volume SIB-IMRT/IGRT to head and neck cancer in elderly and frail patients: outcome and toxicity. <i>Radiation Oncology</i> , 2016 , 11, 133	4.2	12
67	Proton Minibeam Radiation Therapy Reduces Side Effects in an In Vivo Mouse Ear Model. <i>International Journal of Radiation Oncology Biology Physics</i> , 2016 , 95, 234-241	4	52
66	Individualized radiotherapy by combining high-end irradiation and magnetic resonance imaging. Strahlentherapie Und Onkologie, 2016 , 192, 209-15	4.3	11

(2015-2016)

65	SU-F-T-217: A Comprehensive Monte-Carlo Study of Out-Of-Field Secondary Neutron Spectra in a Scanned-Beam Proton Therapy Treatment Room. <i>Medical Physics</i> , 2016 , 43, 3512-3512	4.4		
64	Development and clinical evaluation of an ionization chamber array with 3.5 mm pixel pitch for quality assurance in advanced radiotherapy techniques. <i>Medical Physics</i> , 2016 , 43, 2283	4.4	3	
63	Phantom based evaluation of CT to CBCT image registration for proton therapy dose recalculation. <i>Physics in Medicine and Biology</i> , 2015 , 60, 595-613	3.8	38	
62	Investigation of EBT2 and EBT3 films for proton dosimetry in the 4-20 MeV energy range. <i>Radiation and Environmental Biophysics</i> , 2015 , 54, 71-79	2	37	
61	Fast Biological Modeling for Voxel-based Heavy Ion Treatment Planning Using the Mechanistic Repair-Misrepair-Fixation Model and Nuclear Fragment Spectra. <i>International Journal of Radiation Oncology Biology Physics</i> , 2015 , 93, 557-68	4	27	
60	Assessment of secondary radiation and radiation protection in laser-driven proton therapy. <i>Zeitschrift Fur Medizinische Physik</i> , 2015 , 25, 112-22	7.6	7	
59	SYRA3 COST ActionMicrobeam radiation therapy: Roots and prospects. <i>Physica Medica</i> , 2015 , 31, 561	1-32.7	16	
58	Energy dependent track structure parametrisations for protons and carbon ions based on nanometric simulations. <i>European Physical Journal D</i> , 2015 , 69, 1	1.3	9	
57	Improved normal tissue protection by proton and X-ray microchannels compared to homogeneous field irradiation. <i>Physica Medica</i> , 2015 , 31, 615-20	2.7	9	
56	Future development of biologically relevant dosimetry. British Journal of Radiology, 2015 , 88, 2014039	92 3.4	43	
55	EUD-based biological optimization for carbon ion therapy. <i>Medical Physics</i> , 2015 , 42, 6248-57	4.4	7	
54	A treatment planning study to assess the feasibility of laser-driven proton therapy using a compact gantry design. <i>Medical Physics</i> , 2015 , 42, 5120-9	4.4	11	
53	Local weighting of nanometric track structure properties in macroscopic voxel geometries for particle beam treatment planning. <i>Physics in Medicine and Biology</i> , 2015 , 60, 9145-56	3.8	8	
52	Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy. <i>Radiation Oncology</i> , 2015 , 10, 249	4.2	12	
51	Paving the Road for Modern Particle Therapy - What Can We Learn from the Experience Gained	5.3	13	
	with Fast Neutron Therapy in Munich?. Frontiers in Oncology, 2015 , 5, 262			
50	Investigating CT to CBCT image registration for head and neck proton therapy as a tool for daily dose recalculation. <i>Medical Physics</i> , 2015 , 42, 1354-66	4.4	86	
	Investigating CT to CBCT image registration for head and neck proton therapy as a tool for daily		86	

47	Corrigendum to Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams[Phys Med 30 (2014) 255\(\mathbb{D}\)70]. <i>Physica Medica</i> , 2015 , 31, 117	2.7	3
46	The impact of CT window settings on the contouring of a moving target: A phantom study. <i>Clinical Radiology</i> , 2014 , 69, e331-6	2.9	4
45	Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams. <i>Physica Medica</i> , 2014 , 30, 255-70	2.7	62
44	Variance-based sensitivity analysis of biological uncertainties in carbon ion therapy. <i>Physica Medica</i> , 2014 , 30, 583-7	2.7	11
43	Validation of heat shock protein 70 as a tumor-specific biomarker for monitoring the outcome of radiation therapy in tumor mouse models. <i>International Journal of Radiation Oncology Biology Physics</i> , 2014 , 88, 694-700	4	33
42	A systematic review of antiproton radiotherapy. <i>Frontiers in Physics</i> , 2014 , 1,	3.9	3
41	Laser ion acceleration for hadron therapy. <i>Physics-Uspekhi</i> , 2014 , 57, 1149-1179	2.8	72
40	A dose error evaluation study for 4D dose calculations. <i>Physics in Medicine and Biology</i> , 2014 , 59, 6401-1	5 3.8	3
39	The effects of ultra-high dose rate proton irradiation on growth delay in the treatment of human tumor xenografts in nude mice. <i>Radiation Research</i> , 2014 , 181, 177-83	3.1	63
38	SU-D-BRE-05: Feasibility and Limitations of Laser-Driven Proton Therapy: A Treatment Planning Study. <i>Medical Physics</i> , 2014 , 41, 112-112	4.4	
37	WE-D-BRE-07: Variance-Based Sensitivity Analysis to Quantify the Impact of Biological Uncertainties in Particle Therapy. <i>Medical Physics</i> , 2014 , 41, 494-494	4.4	
36	SU-E-T-415: An Ionization Chamber Array with High Spatial Resolution for External Beam Radiotherapy. <i>Medical Physics</i> , 2014 , 41, 321-321	4.4	
35	Reduced side effects by proton microchannel radiotherapy: study in a human skin model. <i>Radiation and Environmental Biophysics</i> , 2013 , 52, 123-33	2	38
34	SU-E-T-52: Evaluation of EBT2 and EBT3 Films for Dosimetry in Laser-Driven Ion Accelerators. <i>Medical Physics</i> , 2013 , 40, 215-215	4.4	1
33	Prioritized optimization in intensity modulated proton therapy. <i>Zeitschrift Fur Medizinische Physik</i> , 2012 , 22, 21-8	7.6	15
32	Laser-driven beam lines for delivering intensity modulated radiation therapy with particle beams. <i>Journal of Biophotonics</i> , 2012 , 5, 903-11	3.1	16
31	Comparison of Gafchromic EBT2 and EBT3 films for clinical photon and proton beams. <i>Medical Physics</i> , 2012 , 39, 5257-62	4.4	171
30	A laser-driven nanosecond proton source for radiobiological studies. <i>Applied Physics Letters</i> , 2012 , 101, 243701	3.4	75

(2008-2012)

29	Dosimetric effects of energy spectrum uncertainties in radiation therapy with laser-driven particle beams. <i>Physics in Medicine and Biology</i> , 2012 , 57, N47-53	3.8	2
28	Measurements to predict the time of target replacement of a helical tomotherapy. <i>Journal of Applied Clinical Medical Physics</i> , 2011 , 12, 3596	2.3	2
27	Theoretical analysis of the dose dependence of the oxygen enhancement ratio and its relevance for clinical applications. <i>Radiation Oncology</i> , 2011 , 6, 171	4.2	54
26	Scanning irradiation device for mice in vivo with pulsed and continuous proton beams. <i>Radiation and Environmental Biophysics</i> , 2011 , 50, 339-44	2	24
25	Application of constant vs. variable relative biological effectiveness in treatment planning of intensity-modulated proton therapy. <i>International Journal of Radiation Oncology Biology Physics</i> , 2011 , 79, 80-8	4	62
24	Modelling of the oxygen enhancement ratio for ion beam radiation therapy. <i>Physics in Medicine and Biology</i> , 2011 , 56, 3251-68	3.8	84
23	Sparse dose painting based on a dual-pass kinetic-oxygen mapping of dynamic PET images. <i>Lecture Notes in Computer Science</i> , 2011 , 14, 484-91	0.9	
22	Quantitative assessment of hypoxia kinetic models by a cross-study of dynamic 18F-FAZA and 15O-H2O in patients with head and neck tumors. <i>Journal of Nuclear Medicine</i> , 2010 , 51, 1386-94	8.9	29
21	Advanced treatment planning methods for efficient radiation therapy with laser accelerated proton and ion beams. <i>Medical Physics</i> , 2010 , 37, 5330-40	4.4	46
20	Comparative analysis of an image-guided versus a non-image-guided setup approach in terms of delivered dose to the parotid glands in head-and-neck cancer IMRT. <i>International Journal of Radiation Oncology Biology Physics</i> , 2010 , 77, 1266-73	4	29
19	Radiobiological effect based treatment plan optimization with the linear quadratic model. <i>Zeitschrift Fur Medizinische Physik</i> , 2010 , 20, 188-96	7.6	9
18	Modifying proton fluence spectra to generate spread-out Bragg peaks with laser accelerated proton beams. <i>Physics in Medicine and Biology</i> , 2009 , 54, N459-66	3.8	21
17	Worst case optimization: a method to account for uncertainties in the optimization of intensity modulated proton therapy. <i>Physics in Medicine and Biology</i> , 2008 , 53, 1689-700	3.8	189
16	Speed optimized influence matrix processing in inverse treatment planning tools. <i>Physics in Medicine and Biology</i> , 2008 , 53, N157-64	3.8	10
15	Non-uniform depth scanning for proton therapy systems employing active energy variation. <i>Physics in Medicine and Biology</i> , 2008 , 53, N149-55	3.8	18
14	Intensity-modulated radiotherapy of nasopharyngeal carcinoma: a comparative treatment planning study of photons and protons. <i>Radiation Oncology</i> , 2008 , 3, 4	4.2	76
13	IMRT treatment planning for prostate cancer using prioritized prescription optimization and mean-tail-dose functions. <i>Linear Algebra and Its Applications</i> , 2008 , 428, 1345-1364	0.9	31
12	Direct comparison of biologically optimized spread-out bragg peaks for protons and carbon ions. <i>International Journal of Radiation Oncology Biology Physics</i> , 2008 , 70, 262-6	4	41

11	A comparison of three optimization algorithms for intensity modulated radiation therapy. <i>Zeitschrift Fur Medizinische Physik</i> , 2008 , 18, 111-9	7.6	14
10	IMRT treatment planning based on prioritizing prescription goals. <i>Physics in Medicine and Biology</i> , 2007 , 52, 1675-92	3.8	69
9	Quantifying lateral tissue heterogeneities in hadron therapy. <i>Medical Physics</i> , 2007 , 34, 1506-13	4.4	36
8	Demonstration of scan path optimization in proton therapy. <i>Medical Physics</i> , 2007 , 34, 3457-64	4.4	20
7	Introduction to Radiotherapy with Photon and Electron Beams and Treatment Planning from Conformal Radiotherapy to IMRT. <i>AIP Conference Proceedings</i> , 2007 ,	0	2
6	Fast multifield optimization of the biological effect in ion therapy. <i>Physics in Medicine and Biology</i> , 2006 , 51, 3127-40	3.8	35
5	Physical Optimization 2006 , 31-45		1
4	Optimization of radiobiological effects in intensity modulated proton therapy. <i>Medical Physics</i> , 2005 , 32, 455-65	4.4	42
3	A phenomenological model for the relative biological effectiveness in therapeutic proton beams. <i>Physics in Medicine and Biology</i> , 2004 , 49, 2811-25	3.8	144
2	Three-dimensional LET calculations for treatment planning of proton therapy. <i>Zeitschrift Fur Medizinische Physik</i> , 2004 , 14, 41-6	7.6	29
1	Analytical linear energy transfer calculations for proton therapy. <i>Medical Physics</i> , 2003 , 30, 806-15	4.4	75