Xiongfu Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3281719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Relating the performances of selective phenol hydrogenation with encapsulated palladium nanoparticles and surrounding distinct LTL-zeolite microenvironments. Chemical Engineering Journal, 2022, 430, 132589.	6.6	9
2	Fabrication of MIL-96 nanosheets and relevant c-oriented ultrathin membrane through solvent optimization. Journal of Membrane Science, 2022, 643, 120064.	4.1	11
3	Localized conversion of ZnO nanorods for fabricating Metal-Organic framework MAF-5 membranes for hydrogen separation. Inorganic Chemistry Communication, 2022, 136, 109126.	1.8	4
4	Fabrication of 2D bimetallic metal-organic framework ultrathin membranes by vapor phase transformation of hydroxy double salts. Journal of Membrane Science, 2022, 644, 120167.	4.1	14
5	Zinc(II)porphyrin-Based Porous Ionic Polymers (PIPs) as Multifunctional Heterogeneous Catalysts for the Conversion of CO ₂ to Cyclic Carbonates. Industrial & Engineering Chemistry Research, 2022, 61, 5093-5102.	1.8	16
6	Geometrically embedding dispersive Pt nanoparticles within silicalite-1 framework for highly selective É', β-unsaturated aldehydes hydrogenation via oriented CÂ=ÂO adsorption configuration. Chemical Engineering Journal, 2022, 446, 137064.	6.6	9
7	Direct Synthesis of Ultrathin Two-Dimensional Co-Based Metal–Organic Framework Membranes by the Conversion of Co(OH) ₂ Sheets for Gas Separation. Industrial & Engineering Chemistry Research, 2022, 61, 9847-9855.	1.8	1
8	Synthesis of hierarchical ZSM-5 nano-aggregated microspheres for application in enhancing the stability of <i>n</i> -hexane aromatization. New Journal of Chemistry, 2021, 45, 18659-18668.	1.4	5
9	Simple and facile one-step synthesis of bowl-like hollow ZSM-5 zeolites. CrystEngComm, 2021, 23, 6892-6898.	1.3	2
10	Facile synthesis of bimetallic MOF crystals with controllable morphology and topology by the self-converted strategy of hydroxy double salts (HDSs). Microporous and Mesoporous Materials, 2021, 322, 111153.	2.2	11
11	Bimetallic Zn/Co-ZIF tubular membrane for highly efficient pervaporation separation of Methanol/MTBE mixture. Journal of Membrane Science, 2021, 638, 119676.	4.1	23
12	Tailoring Locations and Electronic States of Rh Nanoparticles in KL Zeolite by Varying the Reduction Temperature for Selective Phenol Hydrogenation. Industrial & Engineering Chemistry Research, 2021, 60, 17489-17499.	1.8	2
13	Flow synthesis of a novel zirconium-based UiO-66 nanofiltration membrane and its performance in the removal of p-nitrophenol from water. Frontiers of Chemical Science and Engineering, 2020, 14, 651-660.	2.3	4
14	One-Step Encapsulation of Bimetallic Pd–Co Nanoparticles Within UiO-66 for Selective Conversion of Furfural to Cyclopentanone. Catalysis Letters, 2020, 150, 2158-2166.	1.4	16
15	High-Performance Co-Based ZIF-67 Tubular Membrane Achieved by ZnO-Induced Synthesis for Highly Efficient Pervaporation Separation of Methanol/Methyl <i>tert</i> -Butyl Ether Mixture. Industrial & Engineering Chemistry Research, 2019, 58, 15297-15306.	1.8	26
16	Fabrication of oriented metal-organic framework nanosheet membrane coated stainless steel meshes for highly efficient oil/water separation. Separation and Purification Technology, 2019, 229, 115835.	3.9	54
17	Heterogeneous Ligand-Free Rhodium Oxide Catalyst Embedded within Zeolitic Microchannel to Enhance Regioselectivity in Hydroformylation. Industrial & Engineering Chemistry Research, 2019, 58, 21285-21295.	1.8	23
18	Bottom-up synthesis of 2D Co-based metal–organic framework nanosheets by an ammonia-assisted strategy for tuning the crystal morphology. CrystEngComm, 2019, 21, 3199-3208.	1.3	30

#	Article	IF	CITATIONS
19	Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water-solvent solution by ZnO nanorods self-converted strategy for gas separation. Journal of Membrane Science, 2019, 581, 344-354.	4.1	43
20	Bottom-up fabrication of two-dimensional Co-based zeolitic imidazolate framework tubular membranes consisting of nanosheets by vapor phase transformation of Co-based gel for H2/CO2 separation. Journal of Membrane Science, 2019, 573, 200-209.	4.1	58
21	High-performance UiO-66-NH2 tubular membranes by zirconia-induced synthesis for desulfurization of model gasoline via pervaporation. Journal of Membrane Science, 2018, 556, 54-65.	4.1	50
22	Amino-functionalized seeds-induced synthesis of encapsulated Pd@Silicalite-1 core-shell catalysts for size-selective hydrogenation. Catalysis Communications, 2018, 109, 16-19.	1.6	15
23	ZnO Nanorod-Induced Heteroepitaxial Growth of SOD Type Co-Based Zeolitic Imidazolate Framework Membranes for H ₂ Separation. ACS Applied Materials & Interfaces, 2018, 10, 4151-4160.	4.0	52
24	GO-guided direct growth of highly oriented metal–organic framework nanosheet membranes for H ₂ /CO ₂ separation. Chemical Science, 2018, 9, 4132-4141.	3.7	116
25	Preparation of a pure ZIF-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for H ₂ separation. CrystEngComm, 2018, 20, 2440-2448.	1.3	26
26	Flow fabrication of a highly efficient Pd/UiO-66-NH2 film capillary microreactor for 4-nitrophenol reduction. Chemical Engineering Journal, 2018, 333, 146-152.	6.6	56
27	Flower-Like ZnO-Assisted One-Pot Encapsulation of Noble Metal Nanoparticles Supported Catalysts with ZIFs. Applied Surface Science, 2018, 433, 602-609.	3.1	21
28	Growth of ZnO self-converted 2D nanosheet zeolitic imidazolate framework membranes by an ammonia-assisted strategy. Nano Research, 2018, 11, 1850-1860.	5.8	72
29	One-pot synthesis of cup-like ZSM-5 zeolite and its excellent oxidative desulfurization performance. RSC Advances, 2018, 8, 31979-31983.	1.7	10
30	Direct synthesis of propylene oxide using hydrogen peroxide in a membrane reactor. Chemical Papers, 2017, 71, 49-57.	1.0	5
31	Synthesis of stable UiO-66 membranes for pervaporation separation of methanol/methyl tert-butyl ether mixtures by secondary growth. Journal of Membrane Science, 2017, 544, 342-350.	4.1	73
32	ZnO-template synthesis of rattle-type catalysts with supported Pd nanoparticles encapsulated in hollow ZIF-8 for liquid hydrogenation. Chemical Engineering Journal, 2017, 328, 124-132.	6.6	34
33	Preparation of PtRu/WO3–C by intermittent microwave method with enhanced catalytic activity of methanol oxidation. Journal of Applied Electrochemistry, 2016, 46, 887-893.	1.5	9
34	Catalytic dehydration of lactic acid to acrylic acid over modified ZSM-5 catalysts. Chemical Engineering Journal, 2016, 284, 934-941.	6.6	75
35	Synthesis and characterization of ZIF-8@SiO2@Fe3O4 core@double-shell microspheres with noble metal nanoparticles sandwiched between two shell layers. Materials Letters, 2015, 148, 17-21.	1.3	24
36	In situ fabrication of a perfect Pd/ZnO@ZIF-8 core–shell microsphere as an efficient catalyst by a ZnO support-induced ZIF-8 growth strategy. Nanoscale, 2015, 7, 7615-7623.	2.8	118

#	Article	IF	CITATIONS
37	Synthesis of a highly stable ZIF-8 membrane on a macroporous ceramic tube by manual-rubbing ZnO deposition as a multifunctional layer. Journal of Membrane Science, 2015, 490, 354-363.	4.1	54
38	Facile preparation of ZIF-8@Pd-CSS sandwich-type microspheres via in situ growth of ZIF-8 shells over Pd-loaded colloidal carbon spheres with aggregation-resistant and leach-proof properties for the Pd nanoparticles. Applied Surface Science, 2015, 351, 1184-1190.	3.1	24
39	APTES-assisted synthesis of ZIF-8 films on the inner surface of capillary quartz tubes via flow system. Materials Letters, 2015, 141, 344-346.	1.3	16
40	Preparation of ZIF-8 membranes supported on macroporous carbon tubes via a dipcoating–rubbing method. Journal of Physics and Chemistry of Solids, 2015, 77, 23-29.	1.9	13
41	Synthesis of stable Ti-containing mesoporous tubular membrane using silicalite-1 nanoparticles as seeds. Chemical Engineering Journal, 2014, 255, 344-355.	6.6	4
42	Preparation of palladium membrane on Pd/silicalite-1 zeolite particles modified macroporous alumina substrate for hydrogen separation. International Journal of Hydrogen Energy, 2014, 39, 21044-21052.	3.8	32
43	Fabrication of Palladium Membranes Supported on a Silicaliteâ€1 Zeoliteâ€Modified Alumina Tube for Hydrogen Separation. Chemical Engineering and Technology, 2014, 37, 1778-1786.	0.9	9
44	Core–shell Pd/ZSM-5@ZIF-8 membrane micro-reactors with size selectivity properties for alkene hydrogenation. Catalysis Today, 2014, 236, 41-48.	2.2	47
45	A new alkali-resistant Ni/Al2O3-MSU-1 core–shell catalyst for methane steam reforming in a direct internal reforming molten carbonate fuel cell. Journal of Power Sources, 2014, 246, 74-83.	4.0	26
46	New synthesis strategies for Ni/Al2O3-Sil-1 core–shell catalysts for steam reforming of methane. Catalysis Today, 2014, 236, 34-40.	2.2	21
47	Preparation of palladium membrane byÂbio-membrane assisted electroless plating forÂhydrogen separation. International Journal of Hydrogen Energy, 2014, 39, 7069-7076.	3.8	20
48	Pd nanoparticles immobilized in a microporous/mesoporous composite ZIF-8/MSS: A multifunctional catalyst for the hydrogenation of alkenes. Microporous and Mesoporous Materials, 2014, 197, 324-330.	2.2	36
49	Direct Hydroxylation of Benzene to Phenol Using Palladium–Titanium Silicalite Zeolite Bifunctional Membrane Reactors. Industrial & Engineering Chemistry Research, 2014, 53, 5636-5645.	1.8	31
50	New membrane architecture: ZnO@ZIF-8 mixed matrix membrane exhibiting superb H 2 permselectivity and excellent stability. Inorganic Chemistry Communication, 2014, 48, 77-80.	1.8	20
51	New Membrane Architecture with High Performance: ZIF-8 Membrane Supported on Vertically Aligned ZnO Nanorods for Gas Permeation and Separation. Chemistry of Materials, 2014, 26, 1975-1981.	3.2	199
52	New Pd/SiO ₂ @ZIF-8 Core–Shell Catalyst with Selective, Antipoisoning, and Antileaching Properties for the Hydrogenation of Alkenes. Industrial & Engineering Chemistry Research, 2014, 53, 10906-10913.	1.8	55
53	In situ fabrication of high-permeance ZIF-8 tubular membranes in a continuous flow system. Materials Chemistry and Physics, 2014, 148, 10-16.	2.0	32
54	Transformation of SiO2 in Titanium Silicalite-1/SiO2 extrudates during tetrapropylammonium hydroxide treatment and improvement of catalytic properties for propylene epoxidation. Chemical Engineering Journal, 2014, 253, 464-471.	6.6	40

#	Article	IF	CITATIONS
55	A rapid synthesis route for Sn-Beta zeolites by steam-assisted conversion and their catalytic performance in Baeyer–Villiger oxidation. Chemical Engineering Journal, 2013, 218, 425-432.	6.6	107
56	A simple and scalable method for preparing low-defect ZIF-8 tubular membranes. Journal of Materials Chemistry A, 2013, 1, 10635.	5.2	139
57	One-step hydroxylation of benzene to phenol via a Pd capillary membrane microreactor. Catalysis Science and Technology, 2013, 3, 2380.	2.1	18
58	TS-1 zeolite as an effective diffusion barrier for highly stable Pd membrane supported on macroporous α-Al2O3 tube. RSC Advances, 2013, 3, 4821.	1.7	28
59	Factors affecting the formation of Sn-Beta zeolites by steam-assisted conversion method. Materials Chemistry and Physics, 2013, 141, 519-529.	2.0	37
60	Synthesis of Fe3O4@ZIF-8 magnetic core–shell microspheres and their potential application in a capillary microreactor. Chemical Engineering Journal, 2013, 228, 398-404.	6.6	301
61	Zeolite capillary microreactor by flow synthesis method. Catalysis Today, 2012, 193, 221-225.	2.2	22
62	Investigation of Pd membrane reactors for one-step hydroxylation of benzene to phenol. Catalysis Today, 2012, 193, 151-157.	2.2	24
63	Carbon Nanotubes Supported Mono- and Bimetallic Pt and Ru Catalysts for Selective Hydrogenation of Phenylacetylene. Industrial & Engineering Chemistry Research, 2012, 51, 4934-4941.	1.8	60
64	Preparation of core (Ni base)–shell (Silicalite-1) catalysts and their application for alkali resistance in direct internal reforming molten carbonate fuel cell. Journal of Power Sources, 2012, 198, 14-22.	4.0	38
65	Performance of TS-1-Coated Structured Packing Materials for Styrene Oxidation Reaction. ACS Catalysis, 2011, 1, 437-445.	5.5	55
66	Investigating the Role of Zeolite Nanocrystal Seeds in the Synthesis of Mesoporous Catalysts with Zeolite Wall Structure. Chemistry of Materials, 2011, 23, 4469-4479.	3.2	66
67	Preparation and performance of TS-1/SiO2 egg-shell catalysts. Chemical Engineering Journal, 2011, 175, 408-416.	6.6	45
68	Preparation of titanium silicalite-1 catalytic films and application as catalytic membrane reactors. Chemical Engineering Journal, 2010, 156, 562-570.	6.6	77
69	A novel approach for the preparation of highly stable Pd membrane on macroporous α-Al2O3 tube. Journal of Membrane Science, 2010, 362, 241-248.	4.1	35
70	Catalytic properties of benzene hydroxylation by TS-1 film reactor and Pd–TS-1 composite membrane reactor. Catalysis Today, 2010, 156, 288-294.	2.2	51
71	Pd–silicalite-1 composite membrane reactor for direct hydroxylation of benzene to phenol. Catalysis Today, 2010, 156, 282-287.	2.2	14
72	Preparation and properties of TS-1 zeolite and film using Sil-1 nanoparticles as seeds. Chemical Engineering Journal, 2009, 147, 316-322.	6.6	68

#	Article	IF	CITATIONS
73	Pd–silicalite-1 composite membrane for direct hydroxylation of benzene. Chemical Communications, 2009, , 5898.	2.2	56
74	Preparation of alkali-resistant, Sil-1 encapsulated nickel catalysts for direct internal reforming-molten carbonate fuel cell. Catalysis Communications, 2009, 10, 1804-1807.	1.6	27
75	Preparation and application of zeolite/ceramic microfiltration membranes for treatment of oil contaminated water. Journal of Membrane Science, 2008, 325, 420-426.	4.1	187
76	A novel method for the assembly of nano-zeolite crystals on porous stainless steel microchannel and then zeolite film growth. Journal of Physics and Chemistry of Solids, 2007, 68, 26-31.	1.9	66
77	Preparation and Catalytic Performance of Zeolite Layer in Microchannels of a Microreactor by an on-Site Flow Synthesis Method. Chinese Journal of Catalysis, 2007, 28, 758-760.	6.9	5
78	Factors affecting the formation of zeolite seed layers and the effects of seed layers on the growth of zeolite silicalite-1 membranes. Frontiers of Chemical Engineering in China, 2007, 1, 172-177.	0.6	2
79	Modification of carbon membranes and preparation of carbon–zeolite composite membranes with zeolite growth. Carbon, 2006, 44, 501-507.	5.4	15
80	Influence of seed size on the formation and microstructure of zeolite silicalite-1 membranes by seeded growth. Materials Chemistry and Physics, 2006, 96, 42-50.	2.0	82
81	Novel two-layered zeolite NaA-silicalite-1 membranes. Journal of Physics and Chemistry of Solids, 2005, 66, 1034-1038.	1.9	20
82	Experiments and modeling of membrane microreactors. Catalysis Today, 2005, 110, 26-37.	2.2	84
83	Preparation of composite carbon–zeolite membranes using a simple method. Journal of Materials Science, 2004, 39, 5603-5605.	1.7	7
84	An investigation of Knoevenagel condensation reaction in microreactors using a new zeolite catalyst. Applied Catalysis A: General, 2004, 261, 109-118.	2.2	196
85	Novel tubular composite carbon-zeolite membranes. Materials Letters, 2004, 58, 2223-2226.	1.3	17
86	Novel tubular composite carbon-zeolite membranes. , 2004, 58, 2223-2223.		6
87	Factors affecting the synthesis of hetero-atom zeolite Fe-ZSM-5 membrane. Separation and Purification Technology, 2003, 32, 151-158.	3.9	13
88	Synthesis of titanium silicalite-I from TPABr system. Studies in Surface Science and Catalysis, 1997, 112, 499-508.	1.5	9
89	Mercaptosilane-assisted synthesis of highly dispersed and stable Pt nanoparticles on HL zeolites for enhancing hydroisomerization of n-hexane. New Journal of Chemistry, 0, , .	1.4	4
90	Regulating Encapsulation of Small Pt Nanoparticles inside Silicalite-1 Zeolite with the Aid of Sodium Ions for Enhancing <i>n</i> -Hexane Reforming. Industrial & Engineering Chemistry Research, 0, , .	1.8	4