List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3281246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structural insights into µ-opioid receptor activation. Nature, 2015, 524, 315-321.	27.8	743
2	Nonpeptidic δ-opioid Receptor Agonists Reduce Immobility in the Forced Swim Assay in Rats. Neuropsychopharmacology, 2002, 26, 744-755.	5.4	171
3	Comparison of the Antinociceptive Response to Morphine and Morphine-Like Compounds in Male and Female Sprague-Dawley Rats. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 1195-1201.	2.5	155
4	Identification of Small-Molecule Inhibitors of RCS4 Using a High-Throughput Flow Cytometry Protein Interaction Assay. Molecular Pharmacology, 2007, 71, 169-175.	2.3	123
5	Discovery of positive allosteric modulators and silent allosteric modulators of the μ-opioid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10830-10835.	7.1	123
6	A Spatial Focusing Model for G Protein Signals. Journal of Biological Chemistry, 2003, 278, 7278-7284.	3.4	121
7	Challenges for opioid receptor nomenclature: IUPHAR Review 9. British Journal of Pharmacology, 2015, 172, 317-323.	5.4	115
8	Differential binding properties of oripavines at cloned μ- and δ-opioid receptors. European Journal of Pharmacology, 1999, 378, 323-330.	3.5	97
9	Endogenous RGS Protein Action Modulates μ-Opioid Signaling through Cαo. Journal of Biological Chemistry, 2003, 278, 9418-9425.	3.4	92
10	REGULATORs OF G PROTEIN SIGNALING & amp; DRUGS OF ABUSE. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2005, 5, 30-41.	3.4	86
11	Comparison of Receptor Mechanisms and Efficacy Requirements for δ-Agonist-Induced Convulsive Activity and Antinociception in Mice. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 723-729.	2.5	82
12	μ-Opioid receptors and regulators of G protein signaling (RGS) proteins: From a symposium on new concepts in mu-opioid pharmacology. Drug and Alcohol Dependence, 2012, 121, 173-180.	3.2	69
13	RGS inhibition at Gα _{i2} selectively potentiates 5-HT1A–mediated antidepressant effects. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11086-11091.	7.1	60
14	Allostery at opioid receptors: modulation with small molecule ligands. British Journal of Pharmacology, 2018, 175, 2846-2856.	5.4	59
15	Constitutive activity of the \hat{l}' -opioid receptor expressed in C6 glioma cells: identification of non-peptide \hat{l}' -inverse agonists. British Journal of Pharmacology, 1999, 128, 556-562.	5.4	58
16	Differential Effect of Membrane Cholesterol Removal on μ- and δ-Opioid Receptors. Journal of Biological Chemistry, 2009, 284, 22108-22122.	3.4	58
17	Discovery, Synthesis, and Molecular Pharmacology of Selective Positive Allosteric Modulators of the Ĩ-Opioid Receptor. Journal of Medicinal Chemistry, 2015, 58, 4220-4229.	6.4	54
18	Disruption of the Na ⁺ ion binding site as a mechanism for positive allosteric modulation of the mu-opioid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18369-18374.	7.1	51

#	Article	IF	CITATIONS
19	Differential Modulation of μ- and δ-Opioid Receptor Agonists by Endogenous RGS4 Protein in SH-SY5Y Cells. Journal of Biological Chemistry, 2009, 284, 18357-18367.	3.4	48
20	Comparison of the Relative Efficacy and Potency of μ-Opioid Agonists to Activate Cαi/o Proteins Containing a Pertussis Toxin-Insensitive Mutation. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 858-864.	2.5	47
21	Opioid Peptidomimetics: Leads for the Design of Bioavailable Mixed Efficacy μ Opioid Receptor (MOR) Agonist/δOpioid Receptor (DOR) Antagonist Ligands. Journal of Medicinal Chemistry, 2013, 56, 2139-2149.	6.4	45
22	Characterization of the complex morphinan derivative BU72 as a high efficacy, long-lasting mu-opioid receptor agonist. European Journal of Pharmacology, 2004, 499, 107-116.	3.5	44
23	Differential Behavioral Tolerance to the Î'-Opioid Agonist SNC80 ([(+)-4-[(αR)-α-[(2S,5R)-2,5-Dimethyl-4-(2-propenyl)-1-piperazinyl]-(3-methoxyphenyl)methyl]-N,N-diethylbenzami in Sprague-Dawley Rats. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 414-422.	deð	42
24	Differential in Vivo Potencies of Naltrexone and 6β-Naltrexol in the Monkey. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 772-779.	2.5	42
25	Selectivity and Anti-Parkinson's Potential of Thiadiazolidinone RCS4 Inhibitors. ACS Chemical Neuroscience, 2015, 6, 911-919.	3.5	41
26	Regulators of G Protein Signaling (RGS) Proteins as Drug Targets: Modulating G-Protein-Coupled Receptor (GPCR) Signal Transduction. Journal of Medicinal Chemistry, 2011, 54, 7433-7440.	6.4	40
27	Measuring ligand efficacy at the mu-opioid receptor using a conformational biosensor. ELife, 2018, 7, .	6.0	40
28	RGS9-2: probing an intracellular modulator of behavior as a drug target. Trends in Pharmacological Sciences, 2009, 30, 105-111.	8.7	38
29	Mu-Opioid Receptor Coupling to Gαo Plays an Important Role in Opioid Antinociception. Neuropsychopharmacology, 2011, 36, 2041-2053.	5.4	38
30	Endogenous Regulator of G Protein Signaling Proteins Suppress Gαo-Dependent, μ-Opioid Agonist-Mediated Adenylyl Cyclase Supersensitization. Journal of Pharmacology and Experimental Therapeutics, 2004, 310, 215-222.	2.5	37
31	Ligand-Based Discovery of a New Scaffold for Allosteric Modulation of the μ-Opioid Receptor. Journal of Chemical Information and Modeling, 2015, 55, 1836-1843.	5.4	37
32	Synthesis and in Vitro and in Vivo Activity of (â^')-(1R,5R,9R)- and (+)-(1S,5S,9S)-N-Alkenyl-, -N-Alkynyl-, and -N-Cyanoalkyl-5,9-dimethyl-2â€~-hydroxy-6,7-benzomorphan Homologues. Journal of Medicinal Chemistry, 2000, 43, 5030-5036.	6.4	36
33	Comparison of the in vitro efficacy of μ, δ, κ and ORL1 receptor agonists and non-selective opioid agonists in dog brain membranes. Brain Research, 2006, 1073-1074, 290-296.	2.2	36
34	G Protein independent phosphorylation and internalization of the δâ€opioid receptor. Journal of Neurochemistry, 2009, 109, 1526-1535.	3.9	36
35	Pentapeptides Displaying μ Opioid Receptor Agonist and δ Opioid Receptor Partial Agonist/Antagonist Propertiesâ€. Journal of Medicinal Chemistry, 2009, 52, 7724-7731.	6.4	36
36	The Î′â€opioid receptor positive allosteric modulator BMS 986187 is a Gâ€proteinâ€biased allosteric agonist. British Journal of Pharmacology, 2019, 176, 1649-1663.	5.4	36

#	Article	IF	CITATIONS
37	Positive allosteric modulation of the mu-opioid receptor produces analgesia with reduced side effects. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
38	Comparison of the antinociceptive effect of acute morphine in female and male Sprague–Dawley rats using the long-lasting mu-antagonist methocinnamox. Brain Research, 2005, 1058, 137-147.	2.2	35
39	G _{i/o} -Coupled Receptors Compete for Signaling to Adenylyl Cyclase in SH-SY5Y Cells and Reduce Opioid-Mediated cAMP Overshoot. Molecular Pharmacology, 2011, 79, 461-471.	2.3	35
40	Further Optimization and Evaluation of Bioavailable, Mixed-Efficacy μ-Opioid Receptor (MOR) Agonists/Ĩ´-Opioid Receptor (DOR) Antagonists: Balancing MOR and DOR Affinities. Journal of Medicinal Chemistry, 2015, 58, 8952-8969.	6.4	35
41	Pharmacologic Evidence for a Putative Conserved Allosteric Site on Opioid Receptors. Molecular Pharmacology, 2018, 93, 157-167.	2.3	35
42	Convulsive Behavior of Nonpeptide δ-Opioid Ligands:Comparison of SNC80 and BW373U86 in Mice. Analgesia (Elmsford, N Y), 1998, 3, 269-276.	0.5	35
43	Development and <i>in Vitro</i> Characterization of a Novel Bifunctional μ-Agonist/Î-Antagonist Opioid Tetrapeptide. ACS Chemical Biology, 2011, 6, 1375-1381.	3.4	33
44	Regulator of G protein–signaling proteins and addictive drugs. Annals of the New York Academy of Sciences, 2010, 1187, 341-352.	3.8	31
45	Modulation of μ-Opioid Receptor Signaling by RGS19 in SH-SY5Y Cells. Molecular Pharmacology, 2013, 83, 512-520.	2.3	31
46	Effects of <i>N</i> -Substitutions on the Tetrahydroquinoline (THQ) Core of Mixed-Efficacy μ-Opioid Receptor (MOR)/δ-Opioid Receptor (DOR) Ligands. Journal of Medicinal Chemistry, 2016, 59, 4985-4998.	6.4	31
47	<i>In vivo</i> effects of μâ€opioid receptor agonist/δâ€opioid receptor antagonist peptidomimetics following acute and repeated administration. British Journal of Pharmacology, 2018, 175, 2013-2027.	5.4	31
48	Role of signalling molecules in behaviours mediated by the δ opioid receptor agonist SNC80. British Journal of Pharmacology, 2018, 175, 891-901.	5.4	31
49	Tolerance to μ-opioid agonists in human neuroblastoma SH-SY5Y cells as determined by changes in guanosine-5′-O-(3-[35 S]-thio)triphosphate binding. British Journal of Pharmacology, 1997, 121, 1422-1428.	5.4	29
50	Relationship between Rate and Extent of G Protein Activation: Comparison between Full and Partial Opioid Agonists. Journal of Pharmacology and Experimental Therapeutics, 2002, 300, 157-161.	2.5	29
51	Differential modulation of muâ€opioid receptor signaling to adenylyl cyclase by regulators of G protein signaling proteins 4 or 8 and 7 in permeabilised C6 cells is Gî± subtype dependent. Journal of Neurochemistry, 2010, 112, 1026-1034.	3.9	29
52	Differential Control of Opioid Antinociception to Thermal Stimuli in a Knock-In Mouse Expressing Regulator of G-Protein Signaling-Insensitive Gα _o Protein. Journal of Neuroscience, 2013, 33, 4369-4377.	3.6	29
53	Regulator of G-Protein Signaling (RGS) Protein Modulation of Opioid Receptor Signaling as a Potential Target for Pain Management. Frontiers in Molecular Neuroscience, 2020, 13, 5.	2.9	29
54	BU74, a complex oripavine derivative with potent kappa opioid receptor agonism and delayed opioid antagonism. European Journal of Pharmacology, 2005, 509, 117-125.	3.5	28

#	Article	IF	CITATIONS
55	Opioid-induced Down-Regulation of RGS4. Journal of Biological Chemistry, 2011, 286, 7854-7864.	3.4	27
56	The Role of G-proteins and G-protein Regulating Proteins in Depressive Disorders. Frontiers in Pharmacology, 2018, 9, 1289.	3.5	27
57	Activation of G protein by opioid receptors: role of receptor number and G-protein concentration. European Journal of Pharmacology, 2000, 396, 67-75.	3.5	26
58	Asymmetric Synthesis and in Vitro and in Vivo Activity of Tetrahydroquinolines Featuring a Diverse Set of Polar Substitutions at the 6 Position as Mixed-Efficacy μ Opioid Receptor/δ Opioid Receptor Ligands. ACS Chemical Neuroscience, 2015, 6, 1428-1435.	3.5	26
59	<i>In vitro</i> pharmacology of fentanyl analogs at the human mu opioid receptor and their spectroscopic analysis. Drug Testing and Analysis, 2020, 12, 1212-1221.	2.6	26
60	Opioid Receptor Interacting Proteins and the Control of Opioid Signaling. Current Pharmaceutical Design, 2014, 19, 7333-7347.	1.9	26
61	Thienorphine: Receptor Binding and Behavioral Effects in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 227-236.	2.5	25
62	Nucleus accumbens shell excitability is decreased by methamphetamine self-administration and increased by 5-HT2C receptor inverse agonism and agonism. Neuropharmacology, 2015, 89, 113-121.	4.1	24
63	Regulators of G-Protein Signaling (RGS) Proteins Promote Receptor Coupling to G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channels. Journal of Neuroscience, 2018, 38, 8737-8744.	3.6	24
64	C7β-Methyl Analogues of the Orvinols: The Discovery of Kappa Opioid Antagonists with Nociceptin/Orphanin FQ Peptide (NOP) Receptor Partial Agonism and Low, or Zero, Efficacy at Mu Opioid Receptors. Journal of Medicinal Chemistry, 2015, 58, 4242-4249.	6.4	23
65	Modulation of Opioid Receptor Ligand Affinity and Efficacy Using Active and Inactive State Receptor Models. Chemical Biology and Drug Design, 2012, 80, 763-770.	3.2	22
66	Sodium ions increase the binding of the antagonist peptide ICI 174864 to the δ-opiate receptor. Neuropeptides, 1986, 7, 139-143.	2.2	20
67	Comparison of the opioid receptor antagonist properties of naltrexone and 6β-naltrexol in morphine-naìve and morphine-dependent mice. European Journal of Pharmacology, 2008, 583, 48-55.	3.5	20
68	3-Alkyl Ethers of Clocinnamox: Delayed Long-Term μ-Antagonists with Variable μ Efficacy. Journal of Medicinal Chemistry, 1998, 41, 3493-3498.	6.4	19
69	Endogenous Regulator of G Protein Signaling Proteins Reduce μ-Opioid Receptor Desensitization and Down-Regulation and Adenylyl Cyclase Tolerance in C6 Cells. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 809-815.	2.5	19
70	The selective delta opioid agonist SNC80 enhances amphetamine-mediated efflux of dopamine from rat striatum. Neuropharmacology, 2008, 55, 755-762.	4.1	19
71	Constitutively Active μ-Opioid Receptors. Methods in Enzymology, 2010, 484, 445-469.	1.0	19
72	The role of regulator of G protein signaling 4 in delta-opioid receptor-mediated behaviors. Psychopharmacology, 2017, 234, 29-39.	3.1	19

#	Article	IF	CITATIONS
73	70 Cloning and characterization of a δ opioid receptor from zebrafish. Biochemical Society Transactions, 1998, 26, S360-S360.	3.4	18
74	Synthesis and evaluation of 4-substituted piperidines and piperazines as balanced affinity μ opioid receptor (MOR) agonist δ opioid receptor (DOR) antagonist ligands. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 548-551.	2.2	18
75	Rapid Synthesis of Boc-2′,6′-dimethyl- <scp>l</scp> -tyrosine and Derivatives and Incorporation into Opioid Peptidomimetics. ACS Medicinal Chemistry Letters, 2015, 6, 1199-1203.	2.8	18
76	Benzylideneoxymorphone: A new lead for development of bifunctional mu/delta opioid receptor ligands. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 666-669.	2.2	17
77	Role of protein kinase C in functional selectivity for desensitization at the µâ€opioid receptor: from pharmacological curiosity to therapeutic potential. British Journal of Pharmacology, 2009, 158, 154-156.	5.4	16
78	Assays for G-Protein-Coupled Receptor Signaling Using RGS-Insensitive $\hat{Gl_{\pm}}$ Subunits. Methods in Enzymology, 2004, 389, 155-169.	1.0	15
79	Comparison of Peptidic and Nonpeptidic δ-Opioid Agonists on Guanosine 5â€2-O-(3-[35S]thio)triphosphate ([35S]GTPγS) Binding in Brain Slices from Sprague-Dawley Rats. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 1314-1320.	2.5	15
80	Synthesis and Pharmacological Evaluation of Novel C-8 Substituted Tetrahydroquinolines as Balanced-Affinity Mu/Delta Opioid Ligands for the Treatment of Pain. ACS Chemical Neuroscience, 2018, 9, 1840-1848.	3.5	15
81	In silico analysis of SARS-CoV-2 proteins as targets for clinically available drugs. Scientific Reports, 2022, 12, 5320.	3.3	15
82	Isolation and Chemical Modification of Clerodane Diterpenoids from <i>Salvia</i> Species as Potential Agonists at the <i>κ</i> â€Opioid Receptor. Chemistry and Biodiversity, 2007, 4, 1586-1593.	2.1	13
83	Pharmacological Properties of <i>δ</i> -Opioid Receptor–Mediated Behaviors: Agonist Efficacy and Receptor Reserve. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 319-330.	2.5	13
84	Collision coupling, crosstalk, and compartmentalization in G-protein coupled receptor systems: Can a single model explain disparate results?. Journal of Theoretical Biology, 2008, 255, 278-286.	1.7	12
85	5-HT1A receptor-mediated phosphorylation of extracellular signal-regulated kinases (ERK1/2) is modulated by regulator of G protein signaling protein 19. Cellular Signalling, 2014, 26, 1846-1852.	3.6	12
86	Synergistic activity between the delta-opioid agonist SNC80 and amphetamine occurs via a glutamatergic NMDA-receptor dependent mechanism. Neuropharmacology, 2014, 77, 19-27.	4.1	12
87	Antinociceptive and other behavioral effects of the steroid SC17599 are mediated by the μ-opioid receptor. European Journal of Pharmacology, 2000, 395, 121-128.	3.5	11
88	The Intriguing Effects of Substituents in the N-Phenethyl Moiety of Norhydromorphone: A Bifunctional Opioid from a Set of "Tail Wags Dog―Experiments. Molecules, 2020, 25, 2640.	3.8	10
89	Aromatic–Amine Pendants Produce Highly Potent and Efficacious Mixed Efficacy μ-Opioid Receptor (MOR)/Ĵ-Opioid Receptor (DOR) Peptidomimetics with Enhanced Metabolic Stability. Journal of Medicinal Chemistry, 2020, 63, 1671-1683.	6.4	10
90	Modulation of opioid receptor affinity and efficacy via N-substitution of 9β-hydroxy-5-(3-hydroxyphenyl)morphan: Synthesis and computer simulation study. Bioorganic and Medicinal Chemistry, 2017, 25, 2406-2422.	3.0	9

#	Article	IF	CITATIONS
91	Placement of Hydroxy Moiety on Pendant of Peptidomimetic Scaffold Modulates Mu and Kappa Opioid Receptor Efficacy. ACS Chemical Neuroscience, 2017, 8, 2549-2557.	3.5	9
92	Role of gonadal hormones on mu-opioid-stimulated [35S]GTPγS binding and morphine-mediated antinociception in male and female Sprague–Dawley rats. Psychopharmacology, 2011, 218, 483-492.	3.1	8
93	Dual Pharmacophores Explored via Structure–Activity Relationship (SAR) Matrix: Insights into Potent, Bifunctional Opioid Ligand Design. Journal of Medicinal Chemistry, 2019, 62, 4193-4203.	6.4	8
94	Structural Simplification of a Tetrahydroquinoline-Core Peptidomimetic μ-Opioid Receptor (MOR) Agonist/Î⁻Opioid Receptor (DOR) Antagonist Produces Improved Metabolic Stability. Journal of Medicinal Chemistry, 2019, 62, 4142-4157.	6.4	8
95	The Buprenorphine Analogue BU10119 Attenuates Drug-Primed and Stress-Induced Cocaine Reinstatement in Mice. Journal of Pharmacology and Experimental Therapeutics, 2021, 378, 287-299.	2.5	8
96	The Steroid 17α-Acetoxy-6-dimethylaminomethyl-21-fluoro-3-ethoxy-pregna-3,5-dien-20-one (SC17599) Is a Selective μ-Opioid Agonist: Implications for the μ-Opioid Pharmacophore. Molecular Pharmacology, 2000, 58, 669-676.	2.3	7
97	Allosteric Modulator Leads Hiding in Plain Site: Developing Peptide and Peptidomimetics as GPCR Allosteric Modulators. Frontiers in Chemistry, 2021, 9, 671483.	3.6	7
98	Role of the guanine nucleotide binding protein, Gαo, in the development of morphine tolerance and dependence. Psychopharmacology, 2018, 235, 71-82.	3.1	6
99	Mice Expressing Regulators of G protein Signaling–insensitive Gαo Define Roles of μ Opioid Receptor Gαo and Gαi Subunit Coupling in Inhibition of Presynaptic GABA Release. Molecular Pharmacology, 2021, 100, 217-223.	2.3	6
100	<scp>Mixedâ€solvent</scp> molecular dynamics <scp>simulationâ€based</scp> discovery of a putative allosteric site on regulator of G protein signaling 4. Journal of Computational Chemistry, 2021, 42, 2170-2180.	3.3	5
101	Novel Dimethyltyrosine–Tetrahydroisoquinoline Peptidomimetics with Aromatic Tetrahydroisoquinoline Substitutions Show <i>in Vitro</i> Kappa and Mu Opioid Receptor Agonism. ACS Chemical Neuroscience, 2019, 10, 3682-3689.	3.5	3
102	Structure–Activity Relationships of 7-Substituted Dimethyltyrosine-Tetrahydroisoquinoline Opioid Peptidomimetics. Molecules, 2019, 24, 4302.	3.8	3
103	Role of hippocampal 5-HT1A receptors in the antidepressant-like phenotype of mice expressing RGS-insensitive Gl±i2 protein. Neuropharmacology, 2018, 141, 296-304.	4.1	2
104	SAR Matrices Enable Discovery of Mixed Efficacy μ-Opioid Receptor Agonist Peptidomimetics with Simplified Structures through an Aromatic-Amine Pharmacophore. ACS Chemical Neuroscience, 2021, 12, 216-233.	3.5	1
105	Delta Opioid Receptors and G Proteins. , 2003, , .		1
106	A Virtual Docking Screen at 23 SARSâ€CoVâ€2 Proteins Identifies Drug Repurposing Candidates at New Sites and Targets. FASEB Journal, 2021, 35, .	0.5	0
107	Reply to Zhuang et al.: Potential side effects of positive allosteric modulators of the mu-opioid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2108493118.	7.1	0
108	The selective delta opioid agonist SNC80 increases amphetamineâ€mediated release of dopamine. FASEB Journal, 2006, 20, A676.	0.5	0

#	Article	IF	CITATIONS
109	Comparison of naltrexone and 6βâ€naltrexol in morphineâ€naive and morphineâ€dependent mice. FASEB Journal, 2006, 20, A239.	0.5	0
110	G Protein Independent Internalization of delta Opioid Receptors. FASEB Journal, 2007, 21, A426.	0.5	0
111	Disruption of lipid rafts enhances coupling of Gâ€proteins to nonâ€raft associated delta opioid receptors in HEK293 cells. FASEB Journal, 2007, 21, A430.	0.5	0
112	Biphasic regulation of muâ€opioid signaling to adenylyl cyclase by GTPase accelerating protein (GAP) activity of RGS7. FASEB Journal, 2007, 21, A430.	0.5	0
113	Genetic deletion of Regulators of G protein Signaling (RGS) protein activity enhances buprenorphine antinociception while limiting withdrawal behaviors associated with chronic administration. FASEB Journal, 2008, 22, 907.7.	0.5	0
114	Mice lacking RGS protein activity at Gαi2 exhibit a 5HT1A receptorâ€mediated antidepressantâ€like phenotype. FASEB Journal, 2008, 22, 907.8.	0.5	0
115	Effects of membrane cholesterol modulation on mu opioid receptor signaling. FASEB Journal, 2008, 22, 727.5.	0.5	0
116	Effects of agonists with mixed efficacy profiles at the mu and kappa opioid receptor on amphetamine $\hat{a} \in \mathfrak{m}$ ediated dopamine release. FASEB Journal, 2008, 22, 712.8.	0.5	0
117	Membrane cholesterol removal promotes a low agonist affinity state of mu opioid receptors. FASEB Journal, 2009, 23, 943.2.	0.5	0
118	Understanding ligand affinity and efficacy at mu and delta opioid receptors using cyclic pentapeptides. FASEB Journal, 2009, 23, 756.16.	0.5	0
119	Competition between Gi/oâ€coupled receptors prevents cAMP overshoot following chronic opioid treatment. FASEB Journal, 2010, 24, 583.7.	0.5	0
120	The role of Gαo in muâ€opioid signaling and antinociception. FASEB Journal, 2010, 24, 583.5.	0.5	0
121	RGS4 Differentially Regulates Antidepressant and Locomotor Behaviors In Vivo. FASEB Journal, 2015, 29, 618.11.	0.5	0
122	RGS Protein Regulation of CB1 Receptorâ€Mediated Cannabinoid Behaviors. FASEB Journal, 2018, 32, 825.4.	0.5	0
123	Analysis of Antinociception Produced by Positive Allosteric Modulators of the Muâ€Opioid Receptor. FASEB Journal, 2018, 32, 684.6.	0.5	0
124	A Novel Approach to Safer Analgesics: Mu Opioid Receptor Agonist & Delta Opioid Receptor Antagonist Peptidomimetics. FASEB Journal, 2018, 32, 689.6.	0.5	0
125	Buprenorphine C7â€Esters with Improved Nociceptin Receptor Agonist Potency as Analgesics. FASEB Journal, 2019, 33, 663.16.	0.5	0
126	Loss of RGS Control at Gα o Reveals a Balance Between Nociceptin and Muâ€opioid Receptor Systems. FASEB Journal, 2019, 33, 669.12.	0.5	0

#	Article	IF	CITATIONS
127	A Dockingâ€Based Virtual Screen for Bifunctional μâ€Opioid Agonist/δâ€Opioid Antagonist Compounds. FASEB Journal, 2019, 33, 670.4.	0.5	0