Philippe Poure

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3281080/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fault Tolerance Analysis of Five-Level Neutral-Point-Clamped Inverters under Clamping Diode Open-Circuit Failure. Electronics (Switzerland), 2022, 11, 1461.	1.8	2
2	A Real-Time Fault-Tolerant Control Approach to Ensure the Resiliency of a Self-Healing Multilevel Converter. Energies, 2022, 15, 4721.	1.6	1
3	A Real-Time Fault Diagnosis for Neutral-Point-Clamped Inverters Based on Failure-Mode Algorithm. IEEE Transactions on Industrial Informatics, 2021, 17, 1100-1110.	7.2	18
4	Open-Switch and Open-Clamping Diode Fault Diagnosis for Single-Phase Five-Level Neutral-Point-Clamped Inverters. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 4676-4686.	3.7	19
5	A Remedial Control for Short-Circuit Fault in NPC/H-Bridge Inverters without Redundant Component. Electronics (Switzerland), 2021, 10, 2411.	1.8	2
6	Design and Implementation of a Digital Dual Orthogonal Outputs Chaotic Oscillator. Electronics (Switzerland), 2020, 9, 264.	1.8	1
7	Equivalent Two Switches and Single Switch Buck/Buck-Boost Circuits for Solar Energy Harvesting Systems. Energies, 2020, 13, 583.	1.6	4
8	Open-Switch Fault-Tolerant Operation of a Two-Stage Buck/Buck–Boost Converter With Redundant Synchronous Switch for PV Systems. IEEE Transactions on Industrial Electronics, 2019, 66, 3938-3947.	5.2	51
9	Modulation Strategy with a Minimal Number of Commutations for a Five-Level H-Bridge NPC Inverter. Electronics (Switzerland), 2019, 8, 454.	1.8	1
10	Common Switch Fault Diagnosis for Two-Stage DC-DC Converters Used in Energy Harvesting Applications. Electronics (Switzerland), 2019, 8, 293.	1.8	9
11	Real-time power switch fault diagnosis and fault-tolerant operation in a DFIG-based wind energy system. Renewable Energy, 2018, 116, 209-218.	4.3	30
12	Service Continuity of PV Synchronous Buck/Buck-Boost Converter with Energy Storageâ€. Energies, 2018, 11, 1369.	1.6	8
13	Fully Electrical Modeling of Thermoelectric Generators with Contact Thermal Resistance Under Different Operating Conditions. Journal of Electronic Materials, 2017, 46, 40-50.	1.0	16
14	Equivalent Electrical Circuits of Thermoelectric Generators under Different Operating Conditions. Energies, 2017, 10, 386.	1.6	27
15	Open-switch fault diagnosis for five-level H-bridge neutral point piloted or T-type converters. , 2016, , .		3
16	Open-circuit switch fault tolerant wind energy conversion system based on six/five-leg reconfigurable converter. Electric Power Systems Research, 2016, 137, 104-112.	2.1	25
17	Industrial 100-MVA EAF Voltage Flicker Mitigation Using VSC-Based STATCOM With Improved Performance. IEEE Transactions on Power Delivery, 2016, 31, 2494-2501.	2.9	29
18	Photovoltaic Systems Reliability Improvement by Real-Time FPGA-Based Switch Failure Diagnosis and Fault-Tolerant DC–DC Converter. IEEE Transactions on Industrial Electronics, 2015, 62, 7247-7255.	5.2	141

PHILIPPE POURE

#	Article	IF	CITATIONS
19	Single-Switch DC–DC Converter With Fault-Tolerant Capability Under Open- and Short-Circuit Switch Failures. IEEE Transactions on Power Electronics, 2015, 30, 2703-2712.	5.4	101
20	Open- and Short-Circuit Switch Fault Diagnosis for Nonisolated DC–DC Converters Using Field Programmable Gate Array. IEEE Transactions on Industrial Electronics, 2013, 60, 4136-4146.	5.2	147
21	FPGA-Based Reconfigurable Control for Fault-Tolerant Back-to-Back Converter Without Redundancy. IEEE Transactions on Industrial Electronics, 2013, 60, 3360-3371.	5.2	110
22	FPGA-based reconfigurable control for switch fault tolerant operation of WECS with DFIG without redundancy. Renewable Energy, 2013, 55, 35-48.	4.3	10
23	Fault-Tolerant Five-Leg Converter Topology With FPGA-Based Reconfigurable Control. IEEE Transactions on Industrial Electronics, 2013, 60, 2284-2294.	5.2	48
24	FPGA-Based Fast Detection With Reduced Sensor Count for a Fault-Tolerant Three-Phase Converter. IEEE Transactions on Industrial Informatics, 2013, 9, 1343-1350.	7.2	66
25	Real-time digital simulation of power electronics systems with Neutral Point Piloted multilevel inverter using FPGA. Electric Power Systems Research, 2011, 81, 687-698.	2.1	9
26	Five-leg converter topology for wind energy conversion system with doubly fed induction generator. Renewable Energy, 2011, 36, 3187-3194.	4.3	28
27	Reactive power compensation and active filtering capability of WECS with DFIG without any overâ€rating. Wind Energy, 2010, 13, 603-614.	1.9	27
28	An HIL-Based Reconfigurable Platform for Design, Implementation, and Verification of Electrical System Digital Controllers. IEEE Transactions on Industrial Electronics, 2010, 57, 1226-1236.	5.2	61
29	New digital reference current generation for shunt active power filter under distorted voltage conditions. Electric Power Systems Research, 2009, 79, 759-765.	2.1	104
30	Current Sensor Fault-Tolerant Control for WECS With DFIG. IEEE Transactions on Industrial Electronics, 2009, 56, 4660-4670.	5.2	74
31	FPGA-Based Real-Time Power Converter Failure Diagnosis for Wind Energy Conversion Systems. IEEE Transactions on Industrial Electronics, 2008, 55, 4299-4308.	5.2	212
32	Design of a fully digital controller for a shunt three-phase active filter using VHDL-AMS language. International Journal of Electronics, 2008, 95, 1055-1071.	0.9	3