Weichun He

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/328088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wnt∫î²-Catenin Signaling Promotes Renal Interstitial Fibrosis. Journal of the American Society of Nephrology: JASN, 2009, 20, 765-776.	3.0	510
2	Blockade of Wnt/β-Catenin Signaling by Paricalcitol Ameliorates Proteinuria and Kidney Injury. Journal of the American Society of Nephrology: JASN, 2011, 22, 90-103.	3.0	242
3	Targeted Inhibition of β-Catenin/CBP Signaling Ameliorates Renal Interstitial Fibrosis. Journal of the American Society of Nephrology: JASN, 2011, 22, 1642-1653.	3.0	210
4	Sonic Hedgehog Signaling Mediates Epithelial–Mesenchymal Communication and Promotes Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 801-813.	3.0	166
5	WNT/β-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression. Experimental Cell Research, 2016, 345, 206-217.	1.2	165
6	Wnt/β-Catenin–Promoted Macrophage Alternative Activation Contributes to Kidney Fibrosis. Journal of the American Society of Nephrology: JASN, 2018, 29, 182-193.	3.0	159
7	Matrix Metalloproteinase-7 as a Surrogate Marker Predicts Renal Wnt/β-Catenin Activity in CKD. Journal of the American Society of Nephrology: JASN, 2012, 23, 294-304.	3.0	131
8	Metformin Protects Against Cisplatin-Induced Tubular Cell Apoptosis and Acute Kidney Injury via AMPKα-regulated Autophagy Induction. Scientific Reports, 2016, 6, 23975.	1.6	115
9	The signaling protein Wnt5a promotes TGFβ1-mediated macrophage polarization and kidney fibrosis by inducing the transcriptional regulators Yap/Taz. Journal of Biological Chemistry, 2018, 293, 19290-19302.	1.6	99
10	Plasminogen Activator Inhibitor-1 Is a Transcriptional Target of the Canonical Pathway of Wnt/β-Catenin Signaling. Journal of Biological Chemistry, 2010, 285, 24665-24675.	1.6	97
11	A microRNA-30e/mitochondrial uncoupling protein 2 axis mediates TGF-β1-induced tubular epithelial cell extracellular matrix production and kidney fibrosis. Kidney International, 2013, 84, 285-296.	2.6	88
12	Rictor/mTORC2 signaling mediates TGFβ1-induced fibroblast activation and kidney fibrosis. Kidney International, 2015, 88, 515-527.	2.6	80
13	Rheb/mTORC1 Signaling Promotes Kidney Fibroblast Activation and Fibrosis. Journal of the American Society of Nephrology: JASN, 2013, 24, 1114-1126.	3.0	75
14	Smad ubiquitination regulatory factor-2 in the fibrotic kidney: regulation, target specificity, and functional implication. American Journal of Physiology - Renal Physiology, 2008, 294, F1076-F1083.	1.3	68
15	Blockade of CD38 diminishes lipopolysaccharide-induced macrophage classical activation and acute kidney injury involving NF-κB signaling suppression. Cellular Signalling, 2018, 42, 249-258.	1.7	60
16	Rictor/mTORC2 protects against cisplatin-induced tubular cell death and acute kidney injury. Kidney International, 2014, 86, 86-102.	2.6	58
17	miR-125b/Ets1 axis regulates transdifferentiation and calcification of vascular smooth muscle cells in a high-phosphate environment. Experimental Cell Research, 2014, 322, 302-312.	1.2	57
18	Key Fibrogenic Signaling. Current Pathobiology Reports, 2015, 3, 183-192.	1.6	55

WEICHUN HE

#	Article	IF	CITATIONS
19	Circulatory Mitochondrial DNA Is a Pro-Inflammatory Agent in Maintenance Hemodialysis Patients. PLoS ONE, 2014, 9, e113179.	1.1	52
20	Quercetin Inhibits Fibroblast Activation and Kidney Fibrosis Involving the Suppression of Mammalian Target of Rapamycin and β-catenin Signaling. Scientific Reports, 2016, 6, 23968.	1.6	50
21	PDE/cAMP/Epac/C/EBP-β Signaling Cascade Regulates Mitochondria Biogenesis of Tubular Epithelial Cells in Renal Fibrosis. Antioxidants and Redox Signaling, 2018, 29, 637-652.	2.5	44
22	Yap/Taz mediates mTORC2-stimulated fibroblast activation and kidney fibrosis. Journal of Biological Chemistry, 2018, 293, 16364-16375.	1.6	43
23	Autophagy inhibition induces podocyte apoptosis by activating the pro-apoptotic pathway of endoplasmic reticulum stress. Experimental Cell Research, 2014, 322, 290-301.	1.2	37
24	Sp1 mediates microRNA-29c-regulated type I collagen production in renal tubular epithelial cells. Experimental Cell Research, 2013, 319, 2254-2265.	1.2	33
25	Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis. Cell Death and Disease, 2021, 12, 847.	2.7	31
26	Fibroblast mTOR/PPARγ/HGF axis protects against tubular cell death and acute kidney injury. Cell Death and Differentiation, 2019, 26, 2774-2789.	5.0	29
27	<scp>FHL</scp> 2 promotes tubular epithelialâ€ŧoâ€mesenchymal transition through modulating βâ€ɛatenin signalling. Journal of Cellular and Molecular Medicine, 2018, 22, 1684-1695.	1.6	26
28	Rictor/mammalian target of rapamycin complex 2 promotes macrophage activation and kidney fibrosis. Journal of Pathology, 2017, 242, 488-499.	2.1	23
29	Tuberous sclerosis 1 (Tsc1) mediated mTORC1 activation promotes glycolysis in tubular epithelial cells in kidney fibrosis. Kidney International, 2020, 98, 686-698.	2.6	22
30	Aristolochic Acid Causes Albuminuria by Promoting Mitochondrial DNA Damage and Dysfunction in Podocyte. PLoS ONE, 2013, 8, e83408.	1.1	22
31	Circulating MiR-133a as a Biomarker Predicts Cardiac Hypertrophy in Chronic Hemodialysis Patients. PLoS ONE, 2014, 9, e103079.	1.1	20
32	Emerging Therapeutic Strategies for Attenuating Tubular EMT and Kidney Fibrosis by Targeting Wnt/I²-Catenin Signaling. Frontiers in Pharmacology, 2021, 12, 830340.	1.6	16
33	Mammalian target of rapamycin complex 1 activation in podocytes promotes cellular crescent formation. American Journal of Physiology - Renal Physiology, 2014, 307, F1023-F1032.	1.3	15
34	Deletion of FHL2 in fibroblasts attenuates fibroblasts activation and kidney fibrosis via restraining TGF-β1-induced Wnt/β-catenin signaling. Journal of Molecular Medicine, 2020, 98, 291-307.	1.7	14
35	Improving the Dysregulation of FoxO1 Activity Is a Potential Therapy for Alleviating Diabetic Kidney Disease. Frontiers in Pharmacology, 2021, 12, 630617.	1.6	10
36	Resveratrol ameliorates high-phosphate-induced VSMCs to osteoblast-like cells transdifferentiation and arterial medial calcification in CKD through regulating Wnt/β-catenin signaling. European Journal of Pharmacology, 2022, 925, 174953.	1.7	6

#	ARTICLE	IF	CITATIONS
37	The regulatory role of HIF-1 in tubular epithelial cells in response to kidney injury. Histology and Histopathology, 2020, 35, 321-330.	0.5	4
38	A role of Wnt/beta atenin signaling in the pathogenesis of renal interstitial fibrosis. FASEB Journal, 2009, 23, 359.3.	0.2	0