Chongjun Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3280369/publications.pdf

Version: 2024-02-01

63 3,116 32 papers citations h-index

65 65 4886
all docs docs citations times ranked citing authors

55

g-index

#	Article	IF	CITATIONS
1	Improved supercapacitor performance of α-starch-derived porous carbon through gelatinization. Journal of Power Sources, 2022, 521, 230942.	7.8	24
2	Surface engineering of reclaimed carbon fiber (RCF) electrode for superimposed supercapacitor performance. Journal of Energy Storage, 2022, 46, 103786.	8.1	6
3	Vaporized Hydrothermal Functionalization of Carbon Fiber and Its Superior Supercapacitor Performance. Energy & Description 2022, 36, 4052-4064.	5.1	14
4	Dual Carbon-Supported ZnO/CuO Nanocomposites as an Anode with Improved Performance for Li-Ion Batteries. Energy & Duals, 2022, 36, 5483-5491.	5.1	5
5	<scp>N₂</scp> electrochemical reduction on two dimensional transition metal monoborides: A density functional theory study. International Journal of Quantum Chemistry, 2021, 121, e26548.	2.0	4
6	Aerobic Recovered Carbon Fiber Support-Based MoO ₂ //MnO ₂ Asymmetric Supercapacitor with a Widened Voltage Window. Energy & Supercapacitor with a Widened Voltage Window.	5.1	20
7	One-pot construction of highly oriented Co-MOF nanoneedle arrays on Co foam for high-performance supercapacitor. Nanotechnology, 2021, 32, 395606.	2.6	12
8	CO ₂ Capture, Separation and Reduction on Boronâ€Doped MoS ₂ , MoSe ₂ and Heterostructures with Different Doping Densities: A Theoretical Study. ChemPhysChem, 2021, 22, 2392-2400.	2.1	4
9	Direct Regulation of Double Cation Defects at the A1A2 Site for a High-Performance Oxygen Evolution Reaction Perovskite Catalyst. ACS Applied Materials & Samp; Interfaces, 2021, 13, 332-340.	8.0	18
10	One-step simultaneously heteroatom doping and phosphating to construct 3D FeP/C nanocomposite for lithium storage. Applied Surface Science, 2020, 500, 144055.	6.1	19
11	Porous Co ₉ S ₈ Nanosheet Arrays@Co Foam Electrode via in Situ Sulfidation at Room Temperature for Superior Supercapacitors. Journal of Physical Chemistry C, 2020, 124, 83-91.	3.1	15
12	Hydrolysis assisted in-situ growth of 3D hierarchical FeS/NiS/nickel foam electrode for overall water splitting. Electrochimica Acta, 2020, 332, 135534.	5.2	44
13	The Second Near-Infrared Window Persistent Luminescence for Anti-Counterfeiting Application. Crystal Growth and Design, 2020, 20, 1859-1867.	3.0	46
14	Ni,Zn-codoped MgCo2O4 electrodes for aqueous asymmetric supercapacitor and rechargeable Zn battery. Journal of Power Sources, 2019, 437, 226941.	7.8	48
15	Cholesterol-Modified Black Phosphorus Nanospheres for the First NIR-II Fluorescence Bioimaging. ACS Applied Materials & Distribution (2019), 11, 21399-21407.	8.0	52
16	High OER performance Ni(OH)2 with hierarchical structure. Journal of Solid State Electrochemistry, 2019, 23, 2051-2060.	2.5	11
17	Attaining a high energy density of 106â€Whâ€kgâ^1 for aqueous supercapacitor based on VS4/rGO/CoS2@Co electrode. Chemical Engineering Journal, 2019, 365, 88-98.	12.7	40
18	Reclaimed Carbon Fiber-Based 2.4 V Aqueous Symmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 5095-5102.	6.7	35

#	Article	IF	CITATIONS
19	Surface Reconstruction of La _{0.8} Fe _{0.2} O _{3â^Î} for Superimposed OER Performance. ACS Applied Materials & Interfaces, 2019, 11, 47858-47867.	8.0	64
20	Phytic acid-derived Co2-xNixP2O7-C/RGO and its superior OER electrocatalytic performance. International Journal of Hydrogen Energy, 2019, 44, 844-852.	7.1	26
21	One-step preparation of Fe-doped Ni3S2/rGO@NF electrode and its superior OER performances. International Journal of Hydrogen Energy, 2019, 44, 2664-2674.	7.1	50
22	Facile construction of MoS2/RCF electrode for high-performance supercapacitor. Carbon, 2018, 127, 699-706.	10.3	114
23	One-pot hydrothermal synthesis of ZnO/RGO/ZnO@Zn sensor for sunset yellow in soft drinks. Talanta, 2018, 179, 836-844.	5.5	28
24	One-step construction of hierarchical Ni(OH)2/RGO/Cu2O on Cu foil for ultra-sensitive non-enzymatic glucose and hydrogen peroxide detection. Sensors and Actuators B: Chemical, 2018, 274, 163-171.	7.8	45
25	Ni counterpart-assisted synthesis of nanoarchitectured Co3O4/CoS/Ni(OH)2@Co electrode for superior supercapacitor. Electrochimica Acta, 2018, 284, 444-453.	5.2	38
26	<i>In situ</i> conversion of sub-4Ânm Co(OH) ₂ nanosheet arrays from phytic acid-derived Co ₃ (HPO ₄) ₂ (OH) ₂ for superior high loading supercapacitors. Journal of Materials Chemistry A, 2018, 6, 20015-20024.	10.3	35
27	Blood Circulation, Biodistribution, and Pharmacokinetics of Dextran-Modified Black Phosphorus Nanoparticles. ACS Applied Bio Materials, 2018, 1, 673-682.	4.6	29
28	Functionalization of small black phosphorus nanoparticles for targeted imaging and photothermal therapy of cancer. Science Bulletin, 2018, 63, 917-924.	9.0	67
29	Hierarchical FeS/RGO/FeS@Fe foil as high-performance negative electrode for asymmetric supercapacitors. Inorganic Chemistry Frontiers, 2018, 5, 1912-1922.	6.0	36
30	Solar-assisting pyrolytically reclaimed carbon fiber and their hybrids of MnO2/RCF for supercapacitor electrodes. Carbon, 2017, 114, 230-241.	10.3	42
31	Hydrothermal deposition of CuO/rGO/Cu2O nanocomposite on copper foil for sensitive nonenzymatic voltammetric determination of glucose and hydrogen peroxide. Mikrochimica Acta, 2017, 184, 2341-2348.	5.0	55
32	One-pot Hydrothermal Synthesis of RGO/FeS Composite on Fe Foil for High Performance Supercapacitors. Electrochimica Acta, 2017, 246, 497-506.	5.2	86
33	Facile synthesis of layered CuS/RGO/CuS nanocomposite on Cu foam for ultrasensitive nonenzymatic detection of glucose. Journal of Electroanalytical Chemistry, 2017, 785, 172-179.	3.8	48
34	3D walnut-shaped TiO ₂ /RGO/MoO ₂ @Mo electrode exhibiting extraordinary supercapacitor performance. Journal of Materials Chemistry A, 2017, 5, 18777-18785.	10.3	34
35	Roe-shaped Ni ₃ (PO ₄) ₂ /RGO/Co ₃ (PO ₄) ₂ (NRC) nanocomposite grown in situ on Co foam for superior supercapacitors. Journal of Materials Chemistry A. 2017. 5, 18594-18602.	10.3	51
36	Side Effect of Good's Buffers on Optical Properties of Gold Nanoparticle Solutions. ChemElectroChem, 2016, 3, 1212-1218.	3.4	3

#	Article	IF	CITATIONS
37	One-step hydrothermal preparation of TiO2/RGO/Ni(OH)2/NF electrode with high performance for supercapacitors. Electrochimica Acta, 2016, 218, 216-227.	5.2	51
38	Co ₃ O ₄ /RGO/Co ₃ O ₄ pseudocomposite grown inÂsitu on a Co foil for high-performance supercapacitors. RSC Advances, 2016, 6, 99640-99647.	3.6	23
39	Enabling a High Performance of Mesoporous α-Fe ₂ O ₃ Anodes by Building a Conformal Coating of Cyclized-PAN Network. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19524-19532.	8.0	29
40	Fe ₂ O ₃ /Reduced Graphene Oxide/Fe ₃ O ₄ Composite in Situ Grown on Fe Foil for High-Performance Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30133-30142.	8.0	136
41	Two-Dimensional Titanium Carbide/RGO Composite for High-Performance Supercapacitors. ACS Applied Materials & Discrete Supercapacitors. ACS Applied	8.0	275
42	One-pot solventless preparation of PEGylated black phosphorus nanoparticles for photoacoustic imaging and photothermal therapy of Acancer. Biomaterials, 2016, 91, 81-89.	11.4	403
43	A facile one-step route to synthesize the three-layer nanostructure of CuS/RGO/Ni ₃ S ₂ and its high electrochemical performance. RSC Advances, 2016, 6, 16963-16971.	3.6	20
44	Synthesis of Ni(OH) ₂ /RGO pseudocomposite on nickel foam for supercapacitors with superior performance. Journal of Materials Chemistry A, 2015, 3, 3641-3650.	10.3	149
45	Vertically oriented Ni ₃ S ₂ /RGO/Ni ₃ S ₂ nanosheets on Ni foam for superior supercapacitors. RSC Advances, 2015, 5, 63528-63536.	3.6	41
46	One-pot synthesis of an RGO/ZnO nanocomposite on zinc foil and its excellent performance for the nonenzymatic sensing of xanthine. Sensors and Actuators B: Chemical, 2015, 221, 528-536.	7.8	31
47	Hydrothermal growth of MnO ₂ /RGO/Ni(OH) ₂ on nickel foam with superior supercapacitor performance. RSC Advances, 2015, 5, 62571-62576.	3.6	40
48	PEG-assisted hydrothermal synthesis and electrochemical performance of ZnO/Ketjenblack nanocomposite for lithium ion batteries. RSC Advances, 2015, 5, 40219-40226.	3.6	5
49	Solvothermal recovery of carbon fibers from thermoset polymer-based carbon fiber reinforced polymers. Journal of Reinforced Plastics and Composites, 2015, 34, 1673-1683.	3.1	12
50	Microwave synthesis of LiMg0.05Mn1.95O4 and electrochemical performance at elevated temperature for lithium-ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 569-575.	2.5	18
51	One-pot hydrothermal synthesis of reduced graphene oxide/Ni(OH)2 films on nickel foam for high performance supercapacitors. Electrochimica Acta, 2014, 115, 155-164.	5.2	187
52	Controllable synthesis of RGO/Fe _x O _y nanocomposites as high-performance anode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 9844-9850.	10.3	68
53	Synthesis and characterization of F-doped nanocrystalline Li ₄ Ti ₅ O ₁₂ /C compounds for lithium-ion batteries. RSC Advances, 2014, 4, 41968-41975.	3.6	28
54	Structure and Performance of Dual-doped LiMn2O4 Cathode Materials Prepared via Microwave Synthesis Method. Electrochimica Acta, 2014, 125, 225-231.	5.2	51

#	Article	IF	CITATIONS
55	One-pot Hydrothermal Synthesis of 3D Flower-like RGO/Co3O4/Ni(OH)2 Composite Film on Nickel Foam for High-performance Supercapacitors. Electrochimica Acta, 2014, 135, 336-344.	5.2	59
56	LiFePO4/CA cathode nanocomposite with 3D conductive network structure for Li-ion battery. Journal of Solid State Electrochemistry, 2012, 16, 1503-1508.	2.5	19
57	A Study of Nano Materials and Their Reactions in Liquid Using <i>in situ</i> Wet Cell TEM Technology. Chinese Journal of Chemistry, 2012, 30, 2839-2843.	4.9	13
58	Pd nanoparticles formation by femtosecond laser irradiation and the nonlinear optical properties at 532 nm using nanosecond laser pulses. Journal of Applied Physics, 2011, 109, .	2.5	49
59	Femtosecond inverse Faraday effect in magnetic ionic liquid [bmim]FeCl4. Journal of Applied Physics, 2011, 109, 073109.	2.5	11
60	Recovery of [BMIM]FeCl4 from homogeneous mixture using a simple chemical method. Korean Journal of Chemical Engineering, 2010, 27, 1275-1277.	2.7	22
61	Nanocomposite with Polypyrrole Encapsulated within SBAâ€15â€Mesoporous Silica: Preparation and Its Electrochemical Application. Electroanalysis, 2009, 21, 1792-1798.	2.9	15
62	Spherical natural graphite coated by a thick layer of carbonaceous mesophase for use as an anode material in lithium ion batteries. Journal of Applied Electrochemistry, 2009, 39, 1081-1086.	2.9	22
63	Electrochemistry of Nitrogenâ€Doped Carbon Nanotubes (CN _{<i>x</i>}) with Different Nitrogen Content and Its Application in Simultaneous Determination of Dihydroxybenzene Isomers. Electroanalysis, 2008, 20, 1981-1986.	2.9	71