David D Ackerly

List of Publications by Citations

Source: https://exaly.com/author-pdf/3280239/david-d-ackerly-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

162 67 32,795 171 h-index g-index citations papers 171 7.29 37,992 7.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
162	The worldwide leaf economics spectrum. <i>Nature</i> , 2004 , 428, 821-7	50.4	4915
161	Picante: R tools for integrating phylogenies and ecology. <i>Bioinformatics</i> , 2010 , 26, 1463-4	7.2	3021
160	Phylogenies and Community Ecology. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2002 , 33, 475-505		2707
159	TRY 🖟 global database of plant traits. <i>Global Change Biology</i> , 2011 , 17, 2905-2935	11.4	1623
158	The velocity of climate change. <i>Nature</i> , 2009 , 462, 1052-5	50.4	1497
157	Phylocom: software for the analysis of phylogenetic community structure and trait evolution. <i>Bioinformatics</i> , 2008 , 24, 2098-100	7.2	1281
156	Niche conservatism as an emerging principle in ecology and conservation biology. <i>Ecology Letters</i> , 2010 , 13, 1310-24	10	1081
155	Functional traits and niche-based tree community assembly in an Amazonian forest. <i>Science</i> , 2008 , 322, 580-2	33.3	769
154	Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. <i>Ecological Monographs</i> , 2009 , 79, 109-126	9	767
153	A trait-based test for habitat filtering: convex hull volume. <i>Ecology</i> , 2006 , 87, 1465-71	4.6	766
152	Phylogenetic overdispersion in Floridian oak communities. <i>American Naturalist</i> , 2004 , 163, 823-43	3.7	632
151	A trait-based approach to community assembly: partitioning of species trait values into within- and among-community components. <i>Ecology Letters</i> , 2007 , 10, 135-45	10	534
150	Trait evolution, community assembly, and the phylogenetic structure of ecological communities. <i>American Naturalist</i> , 2007 , 170, 271-83	3.7	512
149	Interpreting phenotypic variation in plants. <i>Trends in Ecology and Evolution</i> , 1994 , 9, 187-91	10.9	484
148	Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. <i>Ecology</i> , 2008 , 89, 1908-20	4.6	444
147	A brief history of seed size. Science, 2005, 307, 576-80	33.3	423
146	Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. <i>Ecological Monographs</i> , 2010 , 80, 401-422	9	416

(2010-2010)

145	The geography of climate change: implications for conservation biogeography. <i>Diversity and Distributions</i> , 2010 , 16, 476-487	5	383	
144	FUNCTIONAL STRATEGIES OF CHAPARRAL SHRUBS IN RELATION TO SEASONAL WATER DEFICIT AND DISTURBANCE. <i>Ecological Monographs</i> , 2004 , 74, 25-44	9	363	
143	Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses. <i>Oecologia</i> , 2002 , 130, 449-457	2.9	347	
142	Filling key gaps in population and community ecology. <i>Frontiers in Ecology and the Environment</i> , 2007 , 5, 145-152	5.5	343	
141	The Evolution of Plant Ecophysiological Traits: Recent Advances and Future Directions. <i>BioScience</i> , 2000 , 50, 979	5.7	315	
140	Climate change and the future of California's endemic flora. <i>PLoS ONE</i> , 2008 , 3, e2502	3.7	294	
139	Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. <i>American Journal of Botany</i> , 2010 , 97, 207-15	2.7	275	
138	Leaf size, sapling allometry, and Corner's rules: phylogeny and correlated evolution in maples (Acer). <i>American Naturalist</i> , 1998 , 152, 767-91	3.7	274	
137	Global patterns in seed size. Global Ecology and Biogeography, 2007, 16, 109-116	6.1	270	
136	Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. <i>Annals of Botany</i> , 2007 , 99, 1003-15	4.1	265	
135	Plant-pollinator interactions and the assembly of plant communities. <i>Trends in Ecology and Evolution</i> , 2008 , 23, 123-30	10.9	263	
134	Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signal. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106 Suppl 2, 19699-706	11.5	252	
133	Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. <i>American Naturalist</i> , 2004 , 163, 654-71	3.7	251	
132	Flammability and serotiny as strategies: correlated evolution in pines. <i>Oikos</i> , 2001 , 94, 326-336	4	241	
131	Factors that shape seed mass evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 10540-4	11.5	217	
130	Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. <i>American Journal of Botany</i> , 1999 , 86, 1272-1281	2.7	211	
129	Niche evolution and adaptive radiation: testing the order of trait divergence. <i>Ecology</i> , 2006 , 87, S50-61	4.6	203	
128	Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2010 , 277, 2131-8	4.4	188	

127	Taxon sampling, correlated evolution, and independent contrasts. <i>Evolution; International Journal of Organic Evolution</i> , 2000 , 54, 1480-92	3.8	185
126	Hydrologic refugia, plants, and climate change. <i>Global Change Biology</i> , 2017 , 23, 2941-2961	11.4	183
125	Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. <i>Science</i> , 2017 , 355,	33.3	169
124	Why are evergreen leaves so contrary about shade?. <i>Trends in Ecology and Evolution</i> , 2008 , 23, 299-303	10.9	165
123	Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 1458-63	11.5	157
122	Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. <i>Ecology Letters</i> , 2002 , 5, 66-76	10	156
121	Leaf dynamics, self-shading and carbon gain in seedlings of a tropical pioneer tree. <i>Oecologia</i> , 1995 , 101, 289-298	2.9	148
120	A comparative method for both discrete and continuous characters using the threshold model. <i>American Naturalist</i> , 2012 , 179, 145-56	3.7	135
119	Self-shading, carbon gain and leaf dynamics: a test of alternative optimality models. <i>Oecologia</i> , 1999 , 119, 300-310	2.9	135
118	The theory behind, and the challenges of, conserving nature's stage in a time of rapid change. <i>Conservation Biology</i> , 2015 , 29, 618-29	6	134
117	The mode and tempo of genome size evolution in eukaryotes. <i>Genome Research</i> , 2007 , 17, 594-601	9.7	123
116	Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California. <i>Global Change Biology</i> , 2014 , 20, 2841-55	11.4	118
115	A link between plant traits and abundance: evidence from coastal California woody plants. <i>Journal of Ecology</i> , 2010 , 98, 814-821	6	110
114	Contrasting trait responses in plant communities to experimental and geographic variation in precipitation. <i>New Phytologist</i> , 2010 , 188, 565-75	9.8	96
113	SPECIES AND FUNCTIONAL DIVERSITY OF NATIVE AND HUMAN-DOMINATED PLANT COMMUNITIES. <i>Ecology</i> , 2005 , 86, 2365-2372	4.6	95
112	Seedling Crown Orientation and Interception of Diffuse Radiation in Tropical Forest Gaps. <i>Ecology</i> , 1995 , 76, 1134-1146	4.6	93
111	Global to community scale differences in the prevalence of convergent over divergent leaf trait distributions in plant assemblages. <i>Global Ecology and Biogeography</i> , 2011 , 20, 755-765	6.1	92
110	Plant growth and reproduction along CO2 gradients: non-linear responses and implications for community change. <i>Global Change Biology</i> , 1995 , 1, 199-207	11.4	90

109	Mangrove Biodiversity and Ecosystem Function. <i>Global Ecology and Biogeography Letters</i> , 1998 , 7, 3		86
108	Phylogenetic uncertainties and sensitivity analyses in comparative biology. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 1996 , 351, 1241-1249	5.8	86
107	Significance of leaf longevity in plants. <i>Plant Species Biology</i> , 1999 , 14, 39-45	1.3	81
106	Evolution, origin and age of lineages in the Californian and Mediterranean floras. <i>Journal of Biogeography</i> , 2009 , 36, 1221-1233	4.1	78
105	Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: congeneric species from desert and coastal environments. <i>New Phytologist</i> , 2003 , 160, 337-347	9.8	78
104	Is there a cost to resprouting? Seedling growth rate and drought tolerance in sprouting and nonsprouting Ceanothus (Rhamnaceae). <i>American Journal of Botany</i> , 2005 , 92, 404-10	2.7	75
103	Salinity and light interactively affect neotropical mangrove seedlings at the leaf and whole plant levels. <i>Oecologia</i> , 2007 , 150, 545-56	2.9	74
102	A broader model for Clphotosynthesis evolution in plants inferred from the goosefoot family (Chenopodiaceae s.s.). <i>Proceedings of the Royal Society B: Biological Sciences</i> , 2012 , 279, 3304-11	4.4	73
101	DEFOLIATION AND GROWTH IN AN UNDERSTORY PALM: QUANTIFYING THE CONTRIBUTIONS OF COMPENSATORY RESPONSES. <i>Ecology</i> , 2003 , 84, 2905-2918	4.6	73
100	Range size, taxon age and hotspots of neoendemism in the California flora. <i>Diversity and Distributions</i> , 2010 , 16, 403-413	5	71
99	Hydraulic architecture and the evolution of shoot allometry in contrasting climates. <i>American Journal of Botany</i> , 2003 , 90, 1502-12	2.7	70
98	Ecological relevance of minimum seasonal water potentials. <i>Physiologia Plantarum</i> , 2006 , 127, 353-359	4.6	69
97	Low Vulnerability to Xylem Embolism in Leaves and Stems of North American Oaks. <i>Plant Physiology</i> , 2018 , 177, 1066-1077	6.6	69
96	Climate-change refugia: biodiversity in the slow lane. <i>Frontiers in Ecology and the Environment</i> , 2020 , 18, 228-234	5.5	68
95	Limiting similarity and functional diversity along environmental gradients. <i>Ecology Letters</i> , 2005 , 8, 272-	-2:8:1	66
94	Canopy-level photosynthetic compensation after defoliation in a tropical understorey palm. <i>Functional Ecology</i> , 2001 , 15, 252-262	5.6	66
93	Light, leaf age, and leaf nitrogen concentration in a tropical vine. <i>Oecologia</i> , 1992 , 89, 596-600	2.9	65
92	Defoliation and ENSO effects on vital rates of an understorey tropical rain forest palm. <i>Journal of Ecology</i> , 2009 , 97, 1050-1061	6	64

91	Endemic plant communities on special soils: early victims or hardy survivors of climate change?. Journal of Ecology, 2012 , 100, 1122-1130	6	63
90	Evolution of hydraulic traits in closely related species pairs from Mediterranean and nonMediterranean environments of North America. <i>New Phytologist</i> , 2007 , 176, 718-726	9.8	61
89	The diversity and conservation of plant reproductive and dispersal functional traits in human-dominated tropical landscapes. <i>Journal of Ecology</i> , 2006 , 94, 522-536	6	61
88	An ecological and evolutionary analysis of photosynthetic thermotolerance using the temperature-dependent increase in fluorescence. <i>Oecologia</i> , 2002 , 130, 505-514	2.9	59
87	Spatial phylogenetics of the native California flora. <i>BMC Biology</i> , 2017 , 15, 96	7.3	58
86	Biogeography, changing climates, and niche evolution: Biogeography, changing climates, and niche evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106 Suppl 2, 19631-6	11.5	58
85	A new method of growth analysis for plants that experience periodic losses of leaf mass. <i>Functional Ecology</i> , 2001 , 15, 804-811	5.6	51
84	Canopy Structure and Dynamics: Integration of Growth Processes in Tropical Pioneer Trees 1996 , 619-6	558	51
83	New concepts, models, and assessments of climate-wise connectivity. <i>Environmental Research Letters</i> , 2018 , 13, 073002	6.2	49
82	Evolutionary Legacy Effects on Ecosystems: Biogeographic Origins, Plant Traits, and Implications for Management in the Era of Global Change. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 2016 , 47, 433-462	13.5	45
81	Size-dependent variation of gender in high density stands of the monoecious annual, Ambrosia artemisiifolia (Asteraceae). <i>Oecologia</i> , 1990 , 82, 474-477	2.9	45
80	The relative influence of climate and housing development on current and projected future fire patterns and structure loss across three California landscapes. <i>Global Environmental Change</i> , 2019 , 56, 41-55	10.1	42
79	Landscape and species-level distribution of morphological and life history traits in a temperate woodland flora. <i>Journal of Vegetation Science</i> , 2000 , 11, 213-224	3.1	42
78	Soil drying and nitrogen availability modulate carbon and water exchange over a range of annual precipitation totals and grassland vegetation types. <i>Global Change Biology</i> , 2009 , 15, 3018-3030	11.4	40
77	Traits, habitats, and clades: identifying traits of potential importance to environmental filtering. <i>American Naturalist</i> , 2009 , 174, E1-E22	3.7	40
76	CO 2 Enrichment and Dependence of Reproduction on Density in an Annual Plant and a Simulation of its Population Dynamics. <i>Journal of Ecology</i> , 1992 , 80, 643	6	40
75	CO_2 and Temperature Effects on Leaf Area Production in Two Annual Plant Species. <i>Ecology</i> , 1992 , 73, 1260-1269	4.6	39
74	Mangrove Seedling Net Photosynthesis, Growth, and Survivorship are Interactively Affected by Salinity and Light1. <i>Biotropica</i> , 2006 , 38, 606-616	2.3	38

(2020-1989)

73	The forest-cerrado transition zone in southern Amazonia: Results of the 1985 Projeto Flora Amazīlica expedition to Mato Grosso. <i>Brittonia</i> , 1989 , 41, 113	0.5	38
72	Sustainability of Mangrove Harvesting: How do Harvesters' Perceptions Differ from Ecological Analysis?. <i>Ecology and Society</i> , 2006 , 11,	4.1	36
71	Correlated evolution of chloroplast heat shock protein expression in closely related plant species. <i>American Journal of Botany</i> , 2001 , 88, 411-418	2.7	36
70	Species richness and endemism in the native flora of California. <i>American Journal of Botany</i> , 2017 , 104, 487-501	2.7	35
69	Effect of local community phylogenetic structure on pollen limitation in an obligately insect-pollinated plant. <i>American Journal of Botany</i> , 2011 , 98, 283-9	2.7	35
68	Are leaf functional traits [hvariant] with plant size and what is [hvariance] anyway?. Functional Ecology, 2014 , 28, 1330-1343	5.6	34
67	Ecological strategies in California chaparral: interacting effects of soils, climate, and fire on specific leaf area. <i>Plant Ecology and Diversity</i> , 2011 , 4, 179-188	2.2	34
66	Analysis of leaf and root transcriptomes of soil-grown Avena barbata plants. <i>Plant and Cell Physiology</i> , 2011 , 52, 317-32	4.9	33
65	Effects of CO elevation on canopy development in the stands of two co-occurring annuals. <i>Oecologia</i> , 1996 , 108, 215-223	2.9	33
64	Carbon assimilation and habitat segregation in resurrection plants: a comparison between desiccation- and non-desiccation-tolerant species of Neotropical Velloziaceae (Pandanales). <i>Functional Ecology</i> , 2015 , 29, 1499-1512	5.6	32
63	Niche evolution across spatial scales: climate and habitat specialization in California Lasthenia (Asteraceae). <i>Ecology</i> , 2012 , 93, S151-S166	4.6	32
62	A Geographic Mosaic of Climate Change Impacts on Terrestrial Vegetation: Which Areas Are Most at Risk?. <i>PLoS ONE</i> , 2015 , 10, e0130629	3.7	31
61	Filtering across spatial scales: phylogeny, biogeography and community structure in bumble bees. <i>PLoS ONE</i> , 2013 , 8, e60446	3.7	30
60	Facets of phylodiversity: evolutionary diversification, divergence and survival as conservation targets. <i>Philosophical Transactions of the Royal Society B: Biological Sciences</i> , 2018 , 374,	5.8	29
59	Cumulative effects of fire and drought in Mediterranean ecosystems. <i>Ecosphere</i> , 2017 , 8, e01906	3.1	28
58	Plant responsiveness to variation in precipitation and nitrogen is consistent across the compositional diversity of a California annual grassland. <i>Journal of Vegetation Science</i> , 2009 , 20, 860-87	03.1	27
57	Tree densities and sex ratios in breeding populations of dioecious Central Amazonian Myristicaceae. <i>Journal of Tropical Ecology</i> , 1990 , 6, 239-248	1.3	27
56	Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics. <i>Global Change Biology</i> , 2020 , 26, 1055-1067	11.4	27

55	Reconciling seasonal hydraulic risk and plant water use through probabilistic soil-plant dynamics. <i>Global Change Biology</i> , 2017 , 23, 3758-3769	11.4	26
54	Phylogeny and Ecology Reconsidered. <i>Journal of Ecology</i> , 1995 , 83, 730	6	26
53	Microclimate and demography interact to shape stable population dynamics across the range of an alpine plant. <i>New Phytologist</i> , 2019 , 222, 193-205	9.8	26
52	No local adaptation in leaf or stem xylem vulnerability to embolism, but consistent vulnerability segmentation in a North American oak. <i>New Phytologist</i> , 2019 , 223, 1296-1306	9.8	25
51	Climate Change Refugia, Fire Ecology and Management. Forests, 2016, 7, 77	2.8	25
50	Topographic, latitudinal and climatic distribution of Pinus coulteri: geographic range limits are not at the edge of the climate envelope. <i>Ecography</i> , 2015 , 38, 590-601	6.5	24
49	Integrating ecology and phylogenetics: the footprint of history in modern-day communities1. <i>Ecology</i> , 2012 , 93, S1-S3	4.6	24
48	Optimal reproductive allocation in annuals and an informational constraint on plasticity. <i>New Phytologist</i> , 2005 , 166, 159-71	9.8	24
47	Compound fire-drought regimes promote ecosystem transitions in Mediterranean ecosystems. Journal of Ecology, 2019 , 107, 1187-1198	6	24
46	Multiple axes of ecological vulnerability to climate change. <i>Global Change Biology</i> , 2020 , 26, 2798-2813	11.4	23
45	Evolutionary Diversification of Continuous Traits: Phylogenetic Tests and Application to Seed Size in the California Flora. <i>Evolutionary Ecology</i> , 2004 , 18, 249-272	1.8	23
44	Canopy gaps to climate change - extreme events, ecology and evolution. <i>New Phytologist</i> , 2003 , 160, 2-4	9.8	23
43	Targeting climate diversity in conservation planning to build resilience to climate change. <i>Ecosphere</i> , 2015 , 6, 1-20	3.1	22
42	A minimal model of fire-vegetation feedbacks and disturbance stochasticity generates alternative stable states in grasslandEhrublandLwoodland systems. <i>Environmental Research Letters</i> , 2015 , 10, 03401	8 ^{6.2}	21
41	Weather underground: Subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought. <i>Global Change Biology</i> , 2020 , 26, 3091-3107	11.4	21
40	Ecological release exposes genetically based niche variation. <i>Ecology Letters</i> , 2014 , 17, 1149-57	10	21
39	Leaf position, light levels, and nitrogen allocation in five species of rain forest pioneer trees. <i>American Journal of Botany</i> , 1995 , 82, 1137-1143	2.7	21
38	The seasonal climate niche predicts phenology and distribution of an ephemeral annual plant, Mollugo verticillata. <i>Journal of Ecology</i> , 2017 , 105, 1323-1334	6	20

(1995-2010)

37	Post-fire regeneration strategies and flammability traits of California chaparral shrubs. International Journal of Wildland Fire, 2010 , 19, 984	3.2	20
36	Resilience to chronic defoliation in a dioecious understorey tropical rain forest palm. <i>Journal of Ecology</i> , 2012 , 100, 1245-1256	6	19
35	The ecohydrological context of drought and classification of plant responses. <i>Ecology Letters</i> , 2018 , 21, 1723-1736	10	19
34	Assembly of Plant Communities 2014 , 67-88		18
33	Adapting California's Ecosystems to a Changing Climate. <i>BioScience</i> , 2015 , 65, 247-262	5.7	18
32	Beyond isohydricity: The role of environmental variability in determining plant drought responses. <i>Plant, Cell and Environment,</i> 2019 , 42, 1104-1111	8.4	18
31	Gap-dependence in mangrove life-history strategies: a consideration of the entire life cycle and patch dynamics. <i>Journal of Ecology</i> , 2007 , 95, 1222-1233	6	17
30	Comment on "A brief history of seed size". <i>Science</i> , 2005 , 310, 783; author reply 783	33.3	17
29	Topoclimates, refugia, and biotic responses to climate change. <i>Frontiers in Ecology and the Environment</i> , 2020 , 18, 288-297	5.5	16
28	Global wind patterns and the vulnerability of wind-dispersed species to climate change. <i>Nature Climate Change</i> , 2020 , 10, 868-875	21.4	15
27	Linking leaf transcript levels to whole plant analyses provides mechanistic insights to the impact of warming and altered water availability in an annual grass. <i>Global Change Biology</i> , 2011 , 17, 1577-1594	11.4	14
26	Plant science decadal vision 2020-2030: Reimagining the potential of plants for a healthy and sustainable future. <i>Plant Direct</i> , 2020 , 4, e00252	3.3	14
25	Effects of topoclimatic complexity on the composition of woody plant communities. <i>AoB PLANTS</i> , 2016 , 8,	2.9	11
24	Small Heat Shock Protein Responses of a Closely Related Pair of Desert and CoastalEncelia. <i>International Journal of Plant Sciences</i> , 2003 , 164, 53-60	2.6	11
23	Global wind patterns shape genetic differentiation, asymmetric gene flow, and genetic diversity in trees. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	11
22	The joint evolution of traits and habitat: ontogenetic shifts in leaf morphology and wetland specialization in Lasthenia. <i>New Phytologist</i> , 2015 , 208, 949-59	9.8	10
21	Response to Comment on "Functional Traits and Niche-Based Tree Community Assembly in an Amazonian Forest". <i>Science</i> , 2009 , 324, 1015-1015	33.3	10
20	Leaf position, light levels, and nitrogen allocation in five species of rain forest pioneer trees. American Journal of Botany, 1995, 82, 1137	2.7	10

19	TAXON SAMPLING, CORRELATED EVOLUTION, AND INDEPENDENT CONTRASTS. <i>Evolution;</i> International Journal of Organic Evolution, 2000 , 54, 1480	3.8	9
18	Evolutionary relationships between drought-related traits and climate shape large hydraulic safety margins in western North American oaks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	9
17	Defoliation and gender effects on fitness components in three congeneric and sympatric understorey palms. <i>Journal of Ecology</i> , 2012 , 100, 1544-1556	6	8
16	Phylogenetic trajectories during secondary succession in a Neotropical dry forest: Assembly processes, ENSO effects and the role of legumes. <i>Perspectives in Plant Ecology, Evolution and Systematics</i> , 2020 , 43, 125513	3	7
15	A TRAIT-BASED TEST FOR HABITAT FILTERING: CONVEX HULL VOLUME 2006 , 87, 1465		6
14	Natural selection maintains species despite frequent hybridization in the desert shrub. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 33373-33383	11.5	6
13	Species Selection Regime and Phylogenetic Tree Shape. Systematic Biology, 2020, 69, 774-794	8.4	6
12	Plant hydraulic traits reveal islands as refugia from worsening drought 2020 , 8, coz115		5
11	Mismatch managed? Phenological phase extension as a strategy to manage phenological asynchrony in plant∃nimal mutualisms. <i>Restoration Ecology</i> , 2020 , 28, 498-505	3.1	5
10	Global patterns in seed size. Global Ecology and Biogeography, 2006, 061120101210018-???	6.1	5
9	Topographic heterogeneity lengthens the duration of pollinator resources. <i>Ecology and Evolution</i> , 2020 , 10, 9301-9312	2.8	5
8	Annual grassland resource pools and fluxes: sensitivity to precipitation and dry periods on two contrasting soils. <i>Ecosphere</i> , 2012 , 3, art70-art70	3.1	4
7	Increases in thermophilus plants in an arid alpine community in response to experimental warming. <i>Arctic, Antarctic, and Alpine Research</i> , 2019 , 51, 201-214	1.8	4
6	The Assembly of Plant Communities 2013 , 1-19		3
5	Phylogenetic Methods in Ecology 2009 ,		2
4	The Incomplete Filling of the N-dimensional Hypervolume. <i>Bulletin of the Ecological Society of America</i> , 2015 , 96, 407-408	0.7	1
3	Range dynamics mediated by compensatory life stage responses to experimental climate manipulations. <i>Ecology Letters</i> , 2021 , 24, 772-780	10	1
2	Assembly of Plant Communities 2015 , 1-18		

Avoided land use conversions and carbon loss from conservation purchases in California. *Journal of Land Use Science*, **2018**, 13, 391-413

2.7