Jesus Pino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3279940/publications.pdf

Version: 2024-02-01

218677 233421 2,609 45 46 26 citations h-index g-index papers 46 46 46 4479 all docs docs citations times ranked citing authors

#	Article	lF	CITATIONS
1	Leptin in the interplay of inflammation, metabolism and immune system disorders. Nature Reviews Rheumatology, 2017, 13, 100-109.	8.0	371
2	Obesity, Fat Mass and Immune System: Role for Leptin. Frontiers in Physiology, 2018, 9, 640.	2.8	284
3	The potential of lipocalin-2/NGAL as biomarker for inflammatory and metabolic diseases. Biomarkers, 2015, 20, 565-571.	1.9	188
4	A new immunometabolic perspective of intervertebral disc degeneration. Nature Reviews Rheumatology, 2022, 18, 47-60.	8.0	131
5	Adipokines, Metabolic Syndrome and Rheumatic Diseases. Journal of Immunology Research, 2014, 2014, 1-14.	2.2	130
6	Adipokines and inflammation: is it a question of weight?. British Journal of Pharmacology, 2018, 175, 1569-1579.	5.4	119
7	Adipokines: Linking metabolic syndrome, the immune system, and arthritic diseases. Biochemical Pharmacology, 2019, 165, 196-206.	4.4	119
8	Molecular Relationships among Obesity, Inflammation and Intervertebral Disc Degeneration: Are Adipokines the Common Link?. International Journal of Molecular Sciences, 2019, 20, 2030.	4.1	84
9	Adiponectin and Leptin Induce VCAM-1 Expression in Human and Murine Chondrocytes. PLoS ONE, 2012, 7, e52533.	2.5	84
10	Biomechanics, obesity, and osteoarthritis. The role of adipokines: When the levee breaks. Journal of Orthopaedic Research, 2018, 36, 594-604.	2.3	76
11	Adiponectin and Leptin: New Targets in Inflammation. Basic and Clinical Pharmacology and Toxicology, 2014, 114, 97-102.	2.5	74
12	Progranulin as a biomarker and potential therapeutic agent. Drug Discovery Today, 2017, 22, 1557-1564.	6.4	68
13	Butyrate Modulates Inflammation in Chondrocytes via GPR43 Receptor. Cellular Physiology and Biochemistry, 2018, 51, 228-243.	1.6	65
14	Differential expression of adipokines in infrapatellar fat pad (IPFP) and synovium of osteoarthritis patients and healthy individuals. Annals of the Rheumatic Diseases, 2014, 73, 631-633.	0.9	59
15	Oleocanthal Inhibits Catabolic and Inflammatory Mediators in LPS-Activated Human Primary Osteoarthritis (OA) Chondrocytes Through MAPKs/NF-κB Pathways. Cellular Physiology and Biochemistry, 2018, 49, 2414-2426.	1.6	58
16	Role of Toll-Like Receptor 4 on Osteoblast Metabolism and Function. Frontiers in Physiology, 2018, 9, 504.	2.8	55
17	Role of Adipokines in Atherosclerosis: Interferences with Cardiovascular Complications in Rheumatic Diseases. Mediators of Inflammation, 2012, 2012, 1-14.	3.0	54
18	An update on leptin as immunomodulator. Expert Review of Clinical Immunology, 2014, 10, 1165-1170.	3.0	45

#	Article	IF	CITATIONS
19	Natural Molecules for Healthy Lifestyles: Oleocanthal from Extra Virgin Olive Oil. Journal of Agricultural and Food Chemistry, 2019, 67, 3845-3853.	5.2	45
20	NUCB2/nesfatinâ€1: A new adipokine expressed in human and murine chondrocytes with proâ€inflammatory properties, an in vitro study. Journal of Orthopaedic Research, 2014, 32, 653-660.	2.3	43
21	Adipokines: novel players in rheumatic diseases. Discovery Medicine, 2013, 15, 73-83.	0.5	43
22	SERPINE2 Inhibits IL- $1\hat{1}$ ±-Induced MMP-13 Expression in Human Chondrocytes: Involvement of ERK/NF- $\hat{1}$ °B/AP-1 Pathways. PLoS ONE, 2015, 10, e0135979.	2.5	42
23	Choosing the right chondrocyte cell line: Focus on nitric oxide. Journal of Orthopaedic Research, 2015, 33, 1784-1788.	2.3	39
24	The novel adipokine progranulin counteracts IL-1 and TLR4-driven inflammatory response in human and murine chondrocytes via TNFR1. Scientific Reports, 2016, 6, 20356.	3.3	34
25	Adipokines induce pro-inflammatory factors in activated Cd4+ T cells from osteoarthritis patient. Journal of Orthopaedic Research, 2017, 35, 1299-1303.	2.3	30
26	E74â€like factor 3 and nuclear factorâ€lºB regulate lipocalinâ€⊋ expression in chondrocytes. Journal of Physiology, 2016, 594, 6133-6146.	2.9	29
27	New drugs from ancient natural foods. Oleocanthal, the natural occurring spicy compound of olive oil: a brief history. Drug Discovery Today, 2015, 20, 406-410.	6.4	28
28	Identification of Novel Adipokines in the Joint. Differential Expression in Healthy and Osteoarthritis Tissues. PLoS ONE, 2015, 10, e0123601.	2.5	26
29	Nitric oxide boosts TLRâ€4 mediated lipocalin 2 expression in chondrocytes. Journal of Orthopaedic Research, 2013, 31, 1046-1052.	2.3	25
30	An Update on the Role of Leptin in the Immuno-Metabolism of Cartilage. International Journal of Molecular Sciences, 2021, 22, 2411.	4.1	23
31	Leptin in Osteoarthritis and Rheumatoid Arthritis: Player or Bystander?. International Journal of Molecular Sciences, 2022, 23, 2859.	4.1	19
32	Levels of the Novel Endogenous Antagonist of Ghrelin Receptor, Liver-Enriched Antimicrobial Peptide-2, in Patients with Rheumatoid Arthritis. Nutrients, 2020, 12, 1006.	4.1	17
33	E74-Like Factor (ELF3) and Leptin, a Novel Loop Between Obesity and Inflammation Perpetuating a Pro-Catabolic State in Cartilage. Cellular Physiology and Biochemistry, 2018, 45, 2401-2410.	1.6	15
34	IL-23 signaling regulation of pro-inflammatory T-cell migration uncovered by phosphoproteomics. PLoS Biology, 2020, 18, e3000646.	5.6	12
35	Monomeric C reactive protein (mCRP) regulates inflammatory responses in human and mouse chondrocytes. Laboratory Investigation, 2021, 101, 1550-1560.	3.7	12
36	Bone metabolism and adipokines: are there perspectives for bone diseases drug discovery?. Expert Opinion on Drug Discovery, 2014, 9, 945-957.	5.0	11

#	Article	IF	CITATIONS
37	IL-36α: a novel cytokine involved in the catabolic and inflammatory response in chondrocytes. Scientific Reports, 2015, 5, 16674.	3.3	11
38	Basic Aspects of Adipokines in Bone Metabolism. Clinical Reviews in Bone and Mineral Metabolism, 2015, 13, 11-19.	0.8	9
39	Pollutants make rheumatic diseases worse: Facts on polychlorinated biphenyls (PCBs) exposure and rheumatic diseases. Life Sciences, 2016, 157, 140-144.	4.3	7
40	Dickkopf-3 (DKK3) Signaling in IL-1α-Challenged Chondrocytes: Involvement of the NF-κB Pathway. Cartilage, 2020, , 194760352093332.	2.7	7
41	Pharmacological Extracts and Molecules from Virola Species: Traditional Uses, Phytochemistry, and Biological Activity. Molecules, 2021, 26, 792.	3.8	5
42	Expression and modulation of adipolin/C1qdc2: a novel adipokine in human and murine ATDC-5 chondrocyte cell line. Annals of the Rheumatic Diseases, 2013, 72, 140-142.	0.9	3
43	Evaluation of Virola oleifera activity in musculoskeletal pathologies: Inhibition of human multiple myeloma cells proliferation and combination therapy with dexamethasone or bortezomib. Journal of Ethnopharmacology, 2021, 272, 113932.	4.1	3
44	Analgesic and antiinflammatory effects of <i>Nigella orientalis</i> L. seeds fixed oil: Pharmacological potentials and molecular mechanisms. Phytotherapy Research, 2022, 36, 1372-1385.	5.8	3
45	WISP-2 modulates the induction of inflammatory mediators and cartilage catabolism in chondrocytes. Laboratory Investigation, 2022, 102, 989-999.	3.7	3
46	Obesity and Osteoarthritis: Are Adipokines Bridging Metabolism, Inflammation, and Biomechanics?., 2020, , 99-115.		1