Adrianagrazia Passaseo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3279113/publications.pdf

Version: 2024-02-01

203 papers

2,875 citations

28 h-index 243625 44 g-index

204 all docs

204 docs citations

times ranked

204

3291 citing authors

#	Article	IF	CITATIONS
1	3D Chiral MetaCrystals. Advanced Functional Materials, 2022, 32, 2109258.	14.9	14
2	Gallium chiral nanoshaping for circular polarization handling. Materials Horizons, 2021, 8, 187-196.	12.2	9
3	Femtomolar Biodetection by a Compact Core–Shell 3D Chiral Metamaterial. Nano Letters, 2021, 21, 6179-6187.	9.1	26
4	Focused Ion Beam Processing for 3D Chiral Photonics Nanostructures. Micromachines, 2021, 12, 6.	2.9	30
5	Near-field enhancement in oxidized close gap aluminum dimers. Nanotechnology, 2021, 32, 025305.	2.6	3
6	Low-Temperature and Ammonia-Free Epitaxy of the GaN/AlGaN/GaN Heterostructure. ACS Applied Electronic Materials, 2021, 3, 5451-5458.	4. 3	3
7	Experimental Evidence of Complex Energy-Level Structuring in Quantum Dot Intermediate Band Solar Cells. ACS Applied Nano Materials, 2020, 3, 8365-8371.	5.0	4
8	Biomolecular Sensing at the Interface between Chiral Metasurfaces and Hyperbolic Metamaterials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 30181-30188.	8.0	55
9	InAs/AlGaAs quantum dots grown by a novel molecular beam epitaxy multistep design for intermediate band solar cells: physical insight into the structure, composition, strain and optical properties. CrystEngComm, 2019, 21, 4644-4652.	2.6	1
10	Symmetry Breaking in Oligomer Surface Plasmon Lattice Resonances. Nano Letters, 2019, 19, 1922-1930.	9.1	37
11	Dielectric and Ferroelectric Response of Multiphase Biâ€Feâ€O Ceramics. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800584.	1.8	3
12	Tailoring Electromagnetic Hot Spots toward Visible Frequencies in Ultra-Narrow Gap Al/Al ₂ O ₃ Bowtie Nanoantennas. ACS Photonics, 2018, 5, 3399-3407.	6.6	20
13	Materials and 3D Designs of Helix Nanostructures for Chirality at Optical Frequencies. Advanced Optical Materials, 2017, 5, 1601079.	7.3	61
14	Electrical properties of planar AlGaN/GaN Schottky diodes: Role of 2DEG and analysis of non-idealities. Journal of Applied Physics, 2017, 121, 135701.	2.5	6
15	Precise detection of circular dichroism in a cluster of nano-helices by photoacoustic measurements. Scientific Reports, 2017, 7, 5257.	3.3	27
16	Inter-level carrier dynamics and photocurrent generation in large band gap quantum dot solar cell by multistep growth. Solar Energy Materials and Solar Cells, 2017, 171, 142-147.	6.2	8
17	Toward Cavity Quantum Electrodynamics with Hybrid Photon Gap-Plasmon States. ACS Nano, 2016, 10, 11360-11368.	14.6	53
18	Role of charge separation on two-step two photon absorption in InAs/GaAs quantum dot intermediate band solar cells. Applied Physics Letters, 2016, 108, .	3.3	25

#	Article	IF	CITATIONS
19	Programmable Extreme Chirality in the Visible by Helix-Shaped Metamaterial Platform. Nano Letters, 2016, 16, 5823-5828.	9.1	71
20	Nanoscale Study of the Tarnishing Process in Electron Beam Lithography-Fabricated Silver Nanoparticles for Plasmonic Applications. Journal of Physical Chemistry C, 2016, 120, 24314-24323.	3.1	49
21	Three-dimensional nanohelices for chiral photonics. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	2.3	33
22	Triple-helical nanowires by tomographic rotatory growth for chiral photonics. Nature Communications, 2015, 6, 6484.	12.8	145
23	Tailoring chiro-optical effects by helical nanowire arrangement. Nanoscale, 2015, 7, 18081-18088.	5.6	43
24	Nanoscale 3D Chiral Plasmonic Helices with Circular Dichroism at Visible Frequencies. ACS Photonics, 2015, 2, 105-114.	6.6	211
25	Optical axis misalignment detection by noncollinear second-harmonic generation. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 26.	2.1	2
26	Chirality: Three Dimensional Chiral Metamaterial Nanospirals in the Visible Range by Vertically Compensated Focused Ion Beam Induced-Deposition (Advanced Optical Materials 2/2014). Advanced Optical Materials, 2014, 2, 198-198.	7.3	3
27	Tuning of polarization sensitivity in closely stacked trilayer InAs/GaAs quantum dots induced by overgrowth dynamics. Nanotechnology, 2014, 25, 055207.	2.6	7
28	InAs/GaAs and InAlGaAs/AlGaAs quantum dot based solar cells for intermediate band operation., 2014,,		3
29	Three Dimensional Chiral Metamaterial Nanospirals in the Visible Range by Vertically Compensated Focused Ion Beam Inducedâ€Deposition. Advanced Optical Materials, 2014, 2, 154-161.	7.3	110
30	Different values for the linewidth enhancement factor of a Quantum-Dots laser obtained using optical and electrical modulation. , 2013, , .		0
31	Electroluminescence and Transmission Electron Microscopy Characterization of Reverse-Biased AlGaN/GaN Devices. IEEE Transactions on Device and Materials Reliability, 2013, 13, 126-135.	2.0	25
32	Understanding polarization properties of InAs quantum dots by atomistic modeling of growth dynamics. AIP Conference Proceedings, $2013, \ldots$	0.4	1
33	Flexible piezoelectric cantilevers fabricated on polyimide substrate. Microelectronic Engineering, 2012, 98, 603-606.	2.4	16
34	The polarization response in InAs quantum dots: theoretical correlation between composition and electronic properties. Nanotechnology, 2012, 23, 165202.	2.6	20
35	3D FEM MODELING AND TECHNOLOGY OF PIEZOELECTRIC RING MEMS ANTENNA. Progress in Electromagnetics Research C, 2011, 23, 123-135.	0.9	4
36	Aluminum Nitride piezo-MEMS on polyimide flexible substrates. Microelectronic Engineering, 2011, 88, 2372-2375.	2.4	43

#	Article	IF	CITATIONS
37	Optical filter based on a coupled bilayer photonic crystal. Microelectronic Engineering, 2011, 88, 2771-2774.	2.4	O
38	Polymeric rolled-up microtubes by using strained semiconductor templates. Microelectronic Engineering, 2011, 88, 2211-2213.	2.4	1
39	Stress-driven AlN cantilever-based flow sensor for fish lateral line system. Microelectronic Engineering, 2011, 88, 2376-2378.	2.4	64
40	Freestanding piezoelectric rings for high efficiency energy harvesting at low frequency. Applied Physics Letters, 2011, 98, .	3.3	33
41	Experimental pressure sensing and technology of piezoelectric microwave/RF MEMS filters. International Journal of Microwave and Wireless Technologies, 2011, 3, 587-593.	1.9	4
42	Design and Optimisation of WDM Circular Photonic Crystals Characterised by Induced Anisotropy. Journal of Computational and Theoretical Nanoscience, 2010, 7, 1848-1854.	0.4	0
43	Bragg reflector by means of the form birefringence effect in dielectric rings. Superlattices and Microstructures, 2010, 47, 219-224.	3.1	O
44	Control of unpolarized emission in closely stacked InAs quantum dot structure. Superlattices and Microstructures, 2010, 47, 72-77.	3.1	9
45	Emission control of colloidal nanocrystals embedded in Si3N4 photonic crystal H1 nanocavities. Microelectronic Engineering, 2010, 87, 1435-1438.	2.4	23
46	Fully integrated three-axis Hall magnetic sensor based on micromachined structures. Microelectronic Engineering, 2010, 87, 1217-1219.	2.4	11
47	Design of nonlinear GaAs/AlGaAs second harmonic converters. Superlattices and Microstructures, 2010, 47, 108-117.	3.1	O
48	Energy detection and radiation by metallic rings embedded into a self-rolled InxGa1-xAs/GaAs micro-tube. , 2010, , .		0
49	A fully integrated GaAs-based three-axis Hall magnetic sensor exploiting self-positioned strain released structures. Journal of Micromechanics and Microengineering, 2010, 20, 105013.	2.6	10
50	Fabrication of GaN/AlGaN 1D photonic crystals designed for nonlinear optical applications. Proceedings of SPIE, 2010, , .	0.8	5
51	GaN/AlGaN microcavities for enhancement of nonlinear optical effects. Proceedings of SPIE, 2010, , .	0.8	0
52	Nanowalled polymer microtubes fabricated by using strained semiconductor templates. Nanotechnology, 2010, 21, 245305.	2.6	10
53	Optical filter based on two coupled PhC GaAs-membranes. Optics Letters, 2010, 35, 411.	3.3	27
54	Plasmonic nanostructures for enhanced light concentration devoted to photovoltaic applications. , 2010, , .		3

#	Article	IF	Citations
55	Artificial Anisotropy in Circular Photonic Crystals and Applications. IEEE Nanotechnology Magazine, 2010, 9, 157-169.	2.0	2
56	Investigation of different mechanisms of GaN growth induced on AlN and GaN nucleation layers. Journal of Applied Physics, 2009, 105, .	2.5	15
57	Mechanical Behaviour of Hybrid Polymer/Semiconductor Microtubes. Ferroelectrics, 2009, 391, 168-174.	0.6	O
58	Novel Time-Domain Circuit Modelling of χ ⁽²⁾ Nonlinear Process in Periodic Optical Waveguide. Ferroelectrics, 2009, 390, 62-70.	0.6	0
59	Structural and Piezoelectric Properties of DC-Sputtered AlN Films Deposited on Different Si-Based Substrates. Ferroelectrics, 2009, 389, 41-48.	0.6	3
60	The effects of the focus ion beam milling process on the optical properties of semiconductor nanostructures. Nanotechnology, 2009, 20, 255306.	2.6	4
61	AlN on polysilicon piezoelectric cantilevers for sensors/actuators. Microelectronic Engineering, 2009, 86, 1204-1207.	2.4	39
62	Comparison of Cu-gate and Ni/Au-gate GaN HEMTs large signal characteristics. , 2009, , .		1
63	Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation. Optics Letters, 2009, 34, 2189.	3.3	16
64	FEM Design and Modeling of \$chi^{(2)} \$ Second-Harmonic Enhancement in Circular Photonic Crystal. Journal of Lightwave Technology, 2009, 27, 4262-4268.	4.6	2
65	Novel grating design approach by radiation modes coupling in nonlinear optical waveguides. Optics Express, 2009, 17, 6982.	3.4	O
66	Optical polarization based logic functions (XOR or XNOR) with nonlinear Gallium nitride nanoslab. Optics Express, 2009, 17, 19337.	3.4	7
67	Bending Analysis in AlN-Based Multilayered Piezoelectric Cantilevers. Ferroelectrics, 2009, 389, 75-82.	0.6	3
68	Fabrication of BAW Resonators Based on Piezoelectric AlN and Reflector-on-Membrane Structure. Ferroelectrics, 2009, 389, 32-40.	0.6	1
69	Properties of quadratic noncollinear interaction of GaN based structures. , 2009, , .		O
70	Design and modeling of l^* sup>(2)second harmonic amplification in circular photonic crystal. Proceedings of SPIE, 2009, , .	0.8	0
71	Double grating design of 3D phase matched waveguide for second harmonic χ ⁽²⁾ process. Proceedings of SPIE, 2009, , .	0.8	O
72	Double Grating Design and Modeling of Second Harmonic Enhancement by Radiation Coupling in Nonlinear Optical Waveguides. Journal of Computational and Theoretical Nanoscience, 2009, 6, 2170-2178.	0.4	0

#	Article	IF	Citations
73	Transverse Resonance Circuit Modeling and Hertzian Potential Formulation for Integrated Optical Waveguides. Journal of Computational and Theoretical Nanoscience, 2009, 6, 1452-1457.	0.4	O
74	Near Field and Optical Diffraction of 3D Dielectric Corner by Transmission Line Modeling and Multipole Expansion of Green's Function. Journal of Computational and Theoretical Nanoscience, 2009, 6, 1075-1080.	0.4	0
75	Circuit Modeling of Discontinuous Planar Waveguides at High Frequencies. Journal of Computational and Theoretical Nanoscience, 2009, 6, 172-177.	0.4	1
76	Accurate design and modeling of \ddot{l} *(sup>(2)nonlinear processes in periodic waveguides by Hertzian potential method. Proceedings of SPIE, 2009, , .	0.8	0
77	High-Q factor single mode circular photonic crystal nano-resonator. Superlattices and Microstructures, 2008, 43, 507-511.	3.1	2
78	Picosecond timescale carrier dynamics of InAs quantum dots: The role of a continuum background. Superlattices and Microstructures, 2008, 43, 445-448.	3.1	1
79	Hybrid polymer/semiconductor microtubes: A new fabrication approach. Microelectronic Engineering, 2008, 85, 1170-1172.	2.4	17
80	Enhanced Performances of Quantum Dot Lasers Operating at 1.3 \$mu\$ m. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1188-1196.	2.9	26
81	3-D FEM Modeling and Fabrication of Circular Photonic Crystal Microcavity. Journal of Lightwave Technology, 2008, 26, 2960-2968.	4.6	32
82	Scalar time domain modeling and coupling of second harmonic generation process in GaAs discontinuous optical waveguide. Optics Express, 2008, 16, 14496.	3.4	8
83	Negative Uniaxial Crystal Behavior Of Circular Photonic Crystal. IEEE Journal of Quantum Electronics, 2008, 44, 1225-1231.	1.9	3
84	1.3 micron high modal gain quantum dot lasers. , 2008, , .		O
85	Linear increase of the modal gain in 1.3 µm InAs/GaAs quantum dot lasers containing up to seven-stacked QD layers. Nanotechnology, 2008, 19, 275401.	2.6	12
86	Evidence of "crossed―transitions in dots-in-a-well structures through waveguide absorption measurements. Applied Physics Letters, 2008, 93, 151112.	3.3	15
87	Structural and optical properties of vertically stacked triple InAs dot-in-well structure. Journal of Applied Physics, 2008, 103, .	2.5	20
88	Design criteria and 3D FEM modeling of air hole photonic crystal. , 2008, , .		0
89	High Gain 1300 nm Quantum Dot Lasers. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0
90	Photoreflectance symmetry and amplitude study of quantum dots in microcavity light emitting diode structure: The cavity-ground state exciton resonance. Journal of Applied Physics, 2007, 101, 024511.	2.5	0

#	Article	IF	CITATIONS
91	Simultaneous filling of InAs quantum dot states from the GaAs barrier under nonresonant excitation. Applied Physics Letters, 2007, 90, 111907.	3.3	19
92	Measurement of pure Kerr nonlinearity in GaN thin films at 800 nm by means of eclipsing Z-scan experiments. Journal of Optics, 2007, 9, L3-L4.	1.5	20
93	High Gain and High Speed 1.3 μm InAs/InGaAs Quantum Dot Lasers. , 2007, , .		0
94	Phase-locked mutually coupled 13 μm quantum-dot lasers. Optics Letters, 2007, 32, 3245.	3.3	33
95	Design and modeling of tapered waveguide for photonic crystal slab coupling by using time-domain Hertzian potentials formulation. Optics Express, 2007, 15, 16484.	3.4	8
96	High-Performance Directly Modulated 1.3-\$mu\$m Undoped InAs–InGaAs Quantum-Dot Lasers. IEEE Photonics Technology Letters, 2007, 19, 191-193.	2.5	22
97	High efficiency and high modal gain InAs/InGaAs/GaAs quantum dot lasers emitting at 1300 nm. Semiconductor Science and Technology, 2007, 22, 396-398.	2.0	25
98	Quantum dot nano-cavity emission tuned by a circular photonic crystal lattice. Microelectronic Engineering, 2007, 84, 1570-1573.	2.4	3
99	Fabrication of AlN/Si SAW delay lines with very low RF signal noise. Microelectronic Engineering, 2007, 84, 1320-1324.	2.4	22
100	Fabrication of force sensors based on two-dimensional photonic crystal technology. Microelectronic Engineering, 2007, 84, 1450-1453.	2.4	49
101	Protein Conduction and Negative Differential Resistance in Large-Scale Nanojunction Arrays. Small, 2007, 3, 1184-1188.	10.0	40
102	Optical system for CO and NO gas detection in the exhaust manifold of combustion engines. Energy Conversion and Management, 2007, 48, 2911-2917.	9.2	3
103	The Influence of a Continuum Background on Carrier Relaxation in InAs/InGaAs Quantum Dot. Nanoscale Research Letters, 2007, 2, .	5.7	9
104	Nanocrystals cylindrical microcavities exploiting thin-walled InGaAs/GaAs microtubes. Microelectronic Engineering, 2007, 84, 1408-1411.	2.4	12
105	Fabrication and transport of large-scale molecular tunnel-junction arrays. Microelectronic Engineering, 2007, 84, 1585-1588.	2.4	3
106	Blue second harmonic generation from aluminum nitride films deposited onto silicon by sputtering technique. Journal of Applied Physics, 2006, 100, 023507.	2.5	20
107	Very High Performance GaN HEMT devices by Optimized Buffer and Field Plate Technology. , 2006, , .		4
108	High-modal gain 1300-nm In(Ga)As-GaAs quantum-dot lasers. IEEE Photonics Technology Letters, 2006, 18, 1735-1737.	2.5	33

#	Article	IF	Citations
109	High quality MOCVD GaN film grown on sapphire substrates using HT-AlN buffer layer. Journal of Non-Crystalline Solids, 2006, 352, 2332-2334.	3.1	15
110	$1.32\ \hat{l}^1\!/\!4$ m InAs/InGaAs/GaAs quantum dot lasers operating at room temperature with low threshold current density. , 2006, , .		2
111	High-gain low-threshold InAs/InGaAs/GaAs quantum dot lasers emitting around 1300 nm. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 4027-4030.	0.8	O
112	Characterization of Ohmic contacts on GaN/AlGaN heterostructures. Applied Surface Science, 2006, 253, 1055-1064.	6.1	4
113	Design and fabrication of active and passive photonic crystal resonators. Microelectronic Engineering, 2006, 83, 1823-1825.	2.4	15
114	Growth and nonlinear characterization of AlN/GaN structures. Journal of Optics, 2006, 8, S524-S527.	1.5	2
115	GaN optical system for CO and NO gas detection in the exhaust manifold of combustion engines. Journal of Optics, 2006, 8, S545-S549.	1.5	8
116	An experimental setup for room temperature waveguide spectroscopy of self-assembled quantum dots. Journal of Optics, 2006, 8, S514-S517.	1.5	1
117	Second harmonic generation in GaNâ [•] Al50Ga50N films deposited by metal-organic chemical vapor deposition. Applied Physics Letters, 2006, 89, 131105.	3.3	12
118	Enhanced modal gain of multilayer InAsâ^•InGaAsâ^•GaAs quantum dot lasers emitting at 1300nm. Journal of Applied Physics, 2006, 100, 123111.	2.5	21
119	Photomodulated reflectance studies of quantum dot in MCLED structures: monitoring cavity-ground state exciton resonance. Microelectronics Journal, 2005, 36, 200-202.	2.0	O
120	Improved performances of $1.31\frac{1}{4}$ m InGaAs QD structures grown at high temperature by metal organic chemical vapour deposition. Microelectronics Journal, 2005, 36, 180-182.	2.0	1
121	Rapid prototyping of two-dimensional photonic crystal devices by a dual beam focused ion beam system. Microelectronic Engineering, 2005, 78-79, 417-421.	2.4	4
122	Epitaxial Al/GaN and Au/GaN junctions on as-grown GaN(0001)1 \tilde{A} — 1 surfaces. Physica Status Solidi (A) Applications and Materials Science, 2005, 202, 804-807.	1.8	1
123	Segregation in InxGa1ⰒxAs/GaAs Stranski–Krastanow layers grown by metal–organic chemical vapour deposition. Philosophical Magazine, 2005, 85, 3857-3870.	1.6	10
124	High-efficiency 1.3νmlnGaAsâ^GaAs quantum-dot microcavity light-emitting diodes grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2005, 86, 151118.	3.3	4
125	Oxidation kinetics of AlAs and (AlGa)As layers in GaAs-based diode laser structures: comparative analysis of available experimental data. Semiconductor Science and Technology, 2004, 19, 333-341.	2.0	30
126	Noise reduction in GaN-based radio frequencysurface acoustic wave filters. Applied Physics Letters, 2004, 85, 1039-1041.	3.3	7

#	Article	IF	Citations
127	Long wavelength emission in InxGa1â^'xAs quantum dot structures grown in a GaAs barrier by metalorganic chemical vapor deposition. Applied Physics Letters, 2004, 84, 1868-1870.	3.3	27
128	1.31â€,μm InGaAs quantum dot light-emitting diodes grown directly in a GaAs matrix by metalorganic chemical-vapor deposition. Applied Physics Letters, 2004, 84, 2482-2484.	3. 3	18
129	Electrically injected InGaAs/GaAs quantum-dot microcavity light-emitting diode operating at 1.3 $\hat{1}$ /4m and grown by metalorganic chemical vapor deposition. Applied Physics Letters, 2004, 84, 4155-4157.	3.3	17
130	Characterisation of the Nonlinear Coefficients of AlGaN/GaN Crystalline Thin Films Via SHG Measurements. AIP Conference Proceedings, 2004, , .	0.4	0
131	Tuning of long-wavelength emission in InxGa1â^2xAs quantum dot structures. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 23, 390-395.	2.7	O
132	Fast nanopatterning of two-dimensional photonic crystals by electron beam lithography. Superlattices and Microstructures, 2004, 36, 265-270.	3.1	11
133	Second harmonic generation in AlGaN, GaN and AlxGa1?xN/GaN multiple quantum well structures. Applied Physics B: Lasers and Optics, 2004, 79, 611-615.	2.2	24
134	Role of excitons in the persistent photocurrent of GaN-based MSM detectors. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 589-593.	0.8	2
135	DLTS characterization of silicon nitride passivated AlGaN/GaN heterostructures. Superlattices and Microstructures, 2004, 36, 425-433.	3.1	10
136	GaN-based surface acoustic wave filters for wireless communications. Superlattices and Microstructures, 2004, 36, 825-831.	3.1	23
137	High temperature characterization of GaN-based photodetectors. Sensors and Actuators A: Physical, 2004, 113, 329-333.	4.1	39
138	Persistent photocurrent spectroscopy of GaN metal–semiconductor–metal photodetectors on long time scale. Applied Physics Letters, 2004, 85, 6083-6085.	3.3	28
139	Trapping mechanisms of persistent photocurrent in GaN-based MSM detectors. , 2004, , .		O
140	InGaAs quantum dot structures grown in GaAs barrier by metal-organic chemical vapor deposition for high-efficient long-wavelength emission., 2004, 5361, 44.		0
141	X-ray lithography for 3D microfluidic applications. Microelectronic Engineering, 2004, 73-74, 870-875.	2.4	6
142	Design of two-dimensional photonic-crystal mirrors for InGaAs QW laser applications. Microelectronic Engineering, 2004, 73-74, 377-382.	2.4	1
143	Low-density self-assembled InGaAs QDs grown directly in a GaAs matrix for quantum-communication applications at 1300 nm wavelength. Microelectronic Engineering, 2004, 73-74, 757-761.	2.4	O
144	Fabrication of 3D metallic photonic crystals by X-ray lithography. Microelectronic Engineering, 2003, 67-68, 479-486.	2.4	38

#	Article	IF	Citations
145	Light emission tuning of In0.5Ga0.5As/In0.05Ga0.95As quantum dots by a two-dimensional photonic crystal. Microelectronic Engineering, 2003, 67-68, 832-837.	2.4	1
146	Nanofabrication of high refractive index contrast two-dimensional photonic crystal waveguides. Microelectronic Engineering, 2003, 67-68, 670-675.	2.4	11
147	Second-harmonic generation measured on a GaAs photonic crystal planar waveguide. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 402-405.	2.7	3
148	Linear optical properties and photonic mode dispersion in GaAs/AlGaAs photonic crystal slabs. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 418-419.	2.7	2
149	Open issues for lasing at 1.3 î½m in MOCVD-grown quantum dots. Physica Status Solidi (B): Basic Research, 2003, 238, 349-352.	1.5	0
150	Resonant second-harmonic generation and mode dispersion in photonic crystal waveguides. Physica Status Solidi (B): Basic Research, 2003, 238, 428-431.	1.5	2
151	Comparison of radiative and structural properties of 1.3 νm InxGa(1â^x)As quantum-dot laser structures grown by metalorganic chemical vapor deposition and molecular-beam epitaxy: Effect on the lasing properties. Applied Physics Letters, 2003, 82, 3632-3634.	3.3	31
152	High responsivity GaN-based UV detectors. Electronics Letters, 2003, 39, 1747.	1.0	21
153	Dominance of charged excitons in single-quantum-dot photoluminescence spectra. Physical Review B, 2002, 66, .	3.2	22
154	Luminescence Following Highly Localized Hole Carrier Injection into InGaAs Quantum Dots. Japanese Journal of Applied Physics, 2002, 41, 5127-5128.	1.5	1
155	Fabrication by means of x-ray lithography of two-dimensional GaAs/AlGaAs photonic crystals with an unconventional unit cell. Nanotechnology, 2002, 13, 644-652.	2.6	16
156	Second-harmonic generation in reflection and diffraction by a GaAs photonic-crystal waveguide. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2122.	2.1	30
157	Nano-island fabrication by electron beam lithography and selective oxidation of Al-rich AlGaAs layers for single electron device application. Microelectronic Engineering, 2002, 61-62, 651-656.	2.4	6
158	Thermoresistive and Piezoresistive Properties of Wurtzite N-GaN. Physica Status Solidi A, 2002, 190, 281-286.	1.7	4
159	Electron-Hole Dynamics in MOCVD-Grown InGaAs/GaAs Quantum Dots Emitting at 1.3 ?m. Physica Status Solidi A, 2002, 190, 561-564.	1.7	0
160	Static and dynamic screening of the polarization fields in nitride nanostructures: a theoretical and experimental study. Physica B: Condensed Matter, 2002, 314, 35-38.	2.7	3
161	Capture and thermal re-emission of carriers in long-wavelength InGaAs/GaAs quantum dots. Applied Physics Letters, 2001, 79, 3968-3970.	3.3	64
162	Dependence of the emission wavelength on the internal electric field in quantum-dot laser structures grown by metal–organic chemical-vapor deposition. Applied Physics Letters, 2001, 79, 1435-1437.	3.3	19

#	Article	IF	Citations
163	Influence of the N2/H2 ratio on the structural features of InxGa1â^2xN/GaN films grown by MOCVD. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 87, 237-243.	3.5	1
164	Effects of coupling on the structural properties of InxGa1â^'xAs/GaAs 1-D and 0-D self-organized quantum structures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 87, 256-261.	3.5	3
165	Nanoscale Compositional Fluctuations in Single InGaAs/GaAs Quantum Dots. Physica Status Solidi (B): Basic Research, 2001, 224, 17-20.	1.5	8
166	Charge storage and screening of the internal field in GaN/AlGaN quantum wells. Journal of Crystal Growth, 2001, 230, 492-496.	1.5	11
167	Direct quantitative measurement of compositional enrichment and variations in InyGa1â^'yAs quantum dots. Applied Physics Letters, 2001, 79, 3170-3172.	3.3	19
168	Wavelength control from 1.25 to 1.4â€,μm in InxGa1â^xAs quantum dot structures grown by metal organic chemical vapor deposition. Applied Physics Letters, 2001, 78, 1382-1384.	3.3	50
169	Structural study of InGaAs/GaAs quantum dots grown by metalorganic chemical vapor deposition for optoelectronic applications at 1.3 \hat{l} 4m. Journal of Applied Physics, 2001, 89, 4341-4348.	2.5	41
170	Origin of persistent photocurrent in GaN/AlGaN multiquantum wells. Journal of Applied Physics, 2001, 89, 5782-5784.	2.5	16
171	Atomic equilibrium concentrations in (InGa)As quantum dots. Applied Physics Letters, 2001, 78, 3121-3123.	3.3	14
172	Electronic Levels and Recombination Lifetimes for Quantum Wires in a Magnetic Field. Physica Status Solidi A, 2000, 178, 239-242.	1.7	3
173	Excitonic and Free Carrier Recombination in InxGa1xAs/GaAs V-Shaped Quantum Wire for Different In Content. Physica Status Solidi A, 2000, 178, 243-248.	1.7	1
174	Optical and Transport Properties of GaN/Al0.15Ga0.85N Quantum Wells. Physica Status Solidi A, 2000, 178, 73-78.	1.7	2
175	Effects of the spontaneous polarization and piezoelectric fields on the luminescence spectra of GaN/Al0.15Ga0.85N quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 929-933.	2.7	10
176	Time-resolved magneto-optical properties of V-shaped single quantum wires. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 536-540.	2.7	1
177	Correlation between shape and electronic states in nanostructures. Micron, 2000, 31, 245-251.	2.2	6
178	Time-resolved magnetospectroscopy oflnxGa1â^'xAs/GaAsV-shaped quantum wires. Physical Review B, 2000, 61, 12658-12661.	3.2	6
179	Nanoscale compositional fluctuations in multiple InGaAs/GaAs quantum wires. Journal of Applied Physics, 2000, 87, 2261-2264.	2.5	9
180	Effects of quantum mechanical coupling on the optical properties of vertically stacked V-groove quantum wires. Journal of Applied Physics, 2000, 88, 772-776.	2.5	2

#	Article	IF	Citations
181	Time resolved screening of the piezoelectric field in InGaAs/GaAs V-shaped quantum wires of variable profile. Journal of Physics Condensed Matter, 1999, 11, 5989-5997.	1.8	3
182	Near-field low-temperature photoluminescence spectroscopy of single V-shaped quantum wires. Physical Review B, 1999, 60, 13335-13338.	3.2	7
183	Band-gap renormalization in modulation-dopedIn1â^'xGaxAs/GaAsV-shaped quantum wires. Physical Review B, 1999, 59, 2230-2233.	3.2	19
184	Recombination in InGaAs/GaAs quantum wire lasers. Solid State Communications, 1999, 112, 55-60.	1.9	2
185	Optical processes and electronic states in InGaAs/GaAs V-groove quantum wire lasers. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 1999, 55, 1923-1929.	3.9	0
186	TEM characterization of single and multiple InGaAs/GaAs quantum wires grown by metal–organic vapor phase epitaxy on V-grooved substrates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 67, 39-45.	3.5	1
187	Influence of different V-grooved GaAs substrates on the geometrical shape of InGaAs/GaAs quantum wires. Journal of Crystal Growth, 1999, 197, 777-782.	1.5	12
188	Nonlinear properties in InxGa1â^2xAs/GaAs multiple quantum well laser structures. Superlattices and Microstructures, 1999, 25, 397-400.	3.1	0
189	Electro-optic low-voltage InGaAs/GaAs multiple quantum well modulator with organic–inorganic distributed Bragg reflector. Superlattices and Microstructures, 1999, 25, 313-317.	3.1	2
190	Fabrication and characterization of strained InGaAs quantum wires grown on high index V-grooved GaAs substrates by LP-MOVPE. Superlattices and Microstructures, 1999, 25, 481-485.	3.1	1
191	SI-GaAs detectors with epitaxial junction. IEEE Transactions on Nuclear Science, 1999, 46, 171-175.	2.0	2
192	Electro–optic properties of InGaAs/GaAs quantum wires with V-shaped profile. Solid-State Electronics, 1998, 42, 1239-1243.	1.4	8
193	Self-organized growth of ZnTe nanoscale islands on (001)GaAs. Applied Physics Letters, 1998, 72, 359-361.	3.3	11
194	Microphotoluminescence spectroscopy of vertically stackedInxGa1â^'xAs/GaAsquantum wires. Physical Review B, 1998, 58, 1962-1966.	3.2	19
195	Nonlinear absorption and gain in InGaAs/GaAs quantum wells. Applied Physics Letters, 1997, 71, 915-917.	3.3	1
196	Preparation and test of special surfaces for epi-ready InP wafers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1997, 44, 213-216.	3.5	0
197	Quantum-well optoelectronic modulators in high magnetic field: A technological issue for the operation in particle accelerators. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 390, 237-240.	1.6	O
198	Strain relaxation onset in multiple-quantum wells investigated by high-resolution X-ray diffraction and atomic force microscopy. Applied Surface Science, 1997, 115, 211-216.	6.1	3

#	Article	IF	CITATIONS
199	Structural and optical studies of InxGa1â^'xAs/GaAs multiple quantum wells. Journal of Applied Physics, 1996, 80, 482-489.	2.5	27
200	GaAs hall sensors made by the MOCVD technique. Sensors and Actuators A: Physical, 1992, 32, 651-655.	4.1	5
201	A powerful and stable CO2 laser for CH3OH FIR laser optical pumping. Infrared Physics, 1986, 26, 287-292.	0.5	3
202	A high power CH3OH FIR laser system with long-term stability. Journal of Infrared, Millimeter and Terahertz Waves, 1986, 7, 1677-1690.	0.6	3
203	Nonlinear optical response in patterned planar waveguides. , 0, , .		0