Bruno Rossion

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3279107/publications.pdf

Version: 2024-02-01

272 papers 19,228 citations

70 h-index 125 g-index

291 all docs

291 docs citations

times ranked

291

8589 citing authors

#	Article	IF	CITATIONS
1	Coarse-to-Fine(r) Automatic Familiar Face Recognition in the Human Brain. Cerebral Cortex, 2022, 32, 1560-1573.	2.9	8
2	EEG Frequency Tagging Reveals the Integration of Form and Motion Cues into the Perception of Group Movement. Cerebral Cortex, 2022, 32, 2843-2857.	2.9	16
3	Is human face recognition lateralized to the right hemisphere due to neural competition with left-lateralized visual word recognition? A critical review. Brain Structure and Function, 2022, 227, 599-629.	2.3	34
4	Rapid neural categorization of facelike objects predicts the perceptual awareness of a face (face) Tj ETQq0 0 0 rg	gBT_/Overlo	ock 10 Tf 50 6
5	Intracerebral electrical stimulation of the right anterior fusiform gyrus impairs human face identity recognition. Neurolmage, 2022, 250, 118932.	4.2	15
6	A genuine interindividual variability in number and anatomical localization of face-selective regions in the human brain. Cerebral Cortex, 2022, 32, 4834-4856.	2.9	10
7	Developmental experiences alter the temporal processing characteristics of the visual cortex: Evidence from deaf and hearing native signers. European Journal of Neuroscience, 2022, 55, 1629-1644.	2.6	4
8	Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition.Part II: Neural basis. Neuropsychologia, 2022, 173, 108279.	1.6	6
9	Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part I: Function. Neuropsychologia, 2022, 173, 108278.	1.6	11
10	Developmental changes in neural letterâ€selectivity: A 1â€year followâ€up of beginning readers. Developmental Science, 2021, 24, e12999.	2.4	18
11	Are facing body dyads as special as (single) faces for the human brain?. Cortex, 2021, 135, 361-364.	2.4	0
12	The N170 is Sensitive to Long-term (Personal) Familiarity of a Face Identity. Neuroscience, 2021, 458, 244-255.	2.3	22
13	Odor-driven face-like categorization in the human infant brain. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	26
14	Fast Periodic Auditory Stimulation Reveals a Robust Categorical Response to Voices in the Human Brain. ENeuro, 2021, 8, ENEURO.0471-20.2021.	1.9	9
15	Intracerebral electrical stimulation to understand the neural basis of human face identity recognition. European Journal of Neuroscience, 2021, 54, 4197-4211.	2.6	18
16	Harmonic Amplitude Summation for Frequency-tagging Analysis. Journal of Cognitive Neuroscience, 2021, 33, 1-22.	2.3	28
17	What are superior face identity recognizers (SFIR) made of?. Neuropsychologia, 2021, 158, 107807.	1.6	0
18	Does automatic human face categorization depend on head orientation?. Cortex, 2021, 141, 94-111.	2.4	2

#	Article	IF	CITATIONS
19	Dissociated face- and word-selective intracerebral responses in the human ventral occipito-temporal cortex. Brain Structure and Function, 2021, 226, 3031-3049.	2.3	6
20	The Rapid and automatic categorization of facial expression changes in highly variable natural images. Cortex, 2021, 144, 168-184.	2.4	1
21	Varying Stimulus Duration Reveals Consistent Neural Activity and Behavior for Human Face Individuation. Neuroscience, 2021, 472, 138-156.	2.3	5
22	Implicit, automatic semantic word categorisation in the left occipito-temporal cortex as revealed by fast periodic visual stimulation. NeuroImage, 2021, 238, 118228.	4.2	6
23	Critical information thresholds underlying generic and familiar face categorisation at the same face encounter. Neurolmage, 2021, 243, 118481.	4.2	3
24	Maternal odor shapes rapid face categorization in the infant brain. Developmental Science, 2020, 23, e12877.	2.4	37
25	The right hemispheric dominance for face perception in preschool children depends on the visual discrimination level. Developmental Science, 2020, 23, e12914.	2.4	16
26	Combined frequency-tagging EEG and eye tracking reveal reduced social bias in boys with autism spectrum disorder. Cortex, 2020, 125, 135-148.	2.4	30
27	The neural basis of rapid unfamiliar face individuation with human intracerebral recordings. Neurolmage, 2020, 221, 117174.	4.2	22
28	A robust neural familiar face recognition response in a dynamic (periodic) stream of unfamiliar faces. Cortex, 2020, 132, 281-295.	2.4	15
29	EEG frequency-tagging demonstrates increased left hemispheric involvement and crossmodal plasticity for face processing in congenitally deaf signers. NeuroImage, 2020, 223, 117315.	4.2	23
30	Combined frequency-tagging EEG and eye-tracking measures provide no support for the "excess mouth/diminished eye attention―hypothesis in autism. Molecular Autism, 2020, 11, 94.	4.9	12
31	Typical visual unfamiliar face individuation in left and right mesial temporal epilepsy. Neuropsychologia, 2020, 147, 107583.	1.6	10
32	Categorization of objects and faces in the infant brain and its sensitivity to maternal odor: further evidence for the role of intersensory congruency in perceptual development. Cognitive Development, 2020, 55, 100930.	1.3	14
33	Neural responses in a fast periodic visual stimulation paradigm reveal domain-general visual discrimination deficits in developmental prosopagnosia. Cortex, 2020, 133, 76-102.	2.4	8
34	Understanding human individuation of unfamiliar faces with oddball fast periodic visual stimulation and electroencephalography. European Journal of Neuroscience, 2020, 52, 4283-4344.	2.6	57
35	Biomarkers of Face Perception in Autism Spectrum Disorder: Time to Shift to Fast Periodic Visual Stimulation With Electroencephalography?. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2020, 5, 258-260.	1.5	7
36	All-or-none face categorization in the human brain. NeuroImage, 2020, 213, 116685.	4.2	29

3

#	Article	IF	CITATIONS
37	An ecological measure of rapid and automatic face-sex categorization. Cortex, 2020, 127, 150-161.	2.4	7
38	The Relationship Between the Benton Face Recognition Test and Electrophysiological Unfamiliar Face Individuation Response as Revealed by Fast Periodic Stimulation. Perception, 2020, 49, 210-221.	1.2	8
39	An implicit neural familiar face identity recognition response across widely variable natural views in the human brain. Cognitive Neuroscience, 2020, 11, 143-156.	1.4	11
40	Frequency-Tagging Electroencephalography of Superimposed Social and Non-Social Visual Stimulation Streams Reveals Reduced Saliency of Faces in Autism Spectrum Disorder. Frontiers in Psychiatry, 2020, 11, 332.	2.6	7
41	Fast periodic visual stimulation to highlight the relationship between human intracerebral recordings and scalp electroencephalography. Human Brain Mapping, 2020, 41, 2373-2388.	3.6	7
42	Spatially Dissociated Intracerebral Maps for Face- and House-Selective Activity in the Human Ventral Occipito-Temporal Cortex. Cerebral Cortex, 2020, 30, 4026-4043.	2.9	29
43	Neurophysiological evidence for crossmodal (face-name) person-identity representation in the human left ventral temporal cortex. PLoS Biology, 2020, 18, e3000659.	5.6	5
44	Dissociated face- and word-selective intracerebral responses in the human ventral occipito-temporal cortex. Journal of Vision, 2020, 20, 713.	0.3	0
45	Title is missing!. , 2020, 18, e3000659.		0
46	Title is missing!. , 2020, 18, e3000659.		0
47	Title is missing!. , 2020, 18, e3000659.		0
48	Title is missing!. , 2020, 18, e3000659.		0
49	Title is missing!. , 2020, 18, e3000659.		0
50	Title is missing!. , 2020, 18, e3000659.		0
51	An objective, sensitive and ecologically valid neural measure of rapid human individual face recognition. Royal Society Open Science, 2019, 6, 181904.	2.4	26
52	Fast Periodic Visual Stimulation EEG Reveals Reduced Neural Sensitivity to Fearful Faces in Children with Autism. Journal of Autism and Developmental Disorders, 2019, 49, 4658-4673.	2.7	26
53	A robust implicit measure of facial attractiveness discrimination. Social Cognitive and Affective Neuroscience, 2019, 14, 737-746.	3.0	5
54	High test-retest reliability of a neural index of rapid automatic discrimination of unfamiliar individual faces. Visual Cognition, 2019, 27, 127-141.	1.6	19

#	Article	IF	CITATIONS
55	The contribution of color information to rapid face categorization in natural scenes. Journal of Vision, 2019, 19, 20.	0.3	10
56	Effect of face-related task on rapid individual face discrimination. Neuropsychologia, 2019, 129, 236-245.	1.6	13
57	Rapid and automatic discrimination between facial expressions in the human brain. Neuropsychologia, 2019, 129, 47-55.	1.6	23
58	What can we learn about human individual face recognition from experimental studies in monkeys?. Vision Research, 2019, 157, 142-158.	1.4	46
59	Reduced neural sensitivity to rapid individual face discrimination in autism spectrum disorder. Neurolmage: Clinical, 2019, 21, 101613.	2.7	41
60	Can the N170 Be Used as an Electrophysiological Biomarker Indexing Face Processing Difficulties in Autism Spectrum Disorder?. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 321-323.	1.5	16
61	The inferior occipital gyrus is a major cortical source of the faceâ€evoked N170: Evidence from simultaneous scalp and intracerebral human recordings. Human Brain Mapping, 2019, 40, 1403-1418.	3.6	42
62	The cortical face network of the prosopagnosic patient PS with fast periodic stimulation in fMRI. Cortex, 2019, 119, 528-542.	2.4	16
63	The non-linear development of the right hemispheric specialization for human face perception. Neuropsychologia, 2019, 126, 10-19.	1.6	42
64	Impact of Learning to Read in a Mixed Approach on Neural Tuning to Words in Beginning Readers. Frontiers in Psychology, 2019, 10, 3043.	2.1	6
65	Spatial frequency tuning of single-glance familiar face recognition in a dynamic visual stream. Journal of Vision, 2019, 19, 92a.	0.3	1
66	Fast periodic visual stimulation EEG reveals reduced social bias in autism. Journal of Vision, 2019, 19, 25a.	0.3	0
67	The speed of individual face recognition. Journal of Vision, 2019, 19, 229c.	0.3	0
68	High test-retest reliability of a neural index of rapid automatic discrimination of unfamiliar individual faces. Journal of Vision, 2019, 19, 136c.	0.3	0
69	Electrophysiological individual face adaptation effects with fast periodic visual stimulation resist long interruptions in adaptation. Biological Psychology, 2018, 133, 4-9.	2.2	8
70	A rapid, objective and implicit measure of visual quantity discrimination. Neuropsychologia, 2018, 111, 180-189.	1.6	26
71	Mapping face categorization in the human ventral occipitotemporal cortex with direct neural intracranial recordings. Annals of the New York Academy of Sciences, 2018, 1426, 5-24.	3.8	49
72	Fast periodic stimulation (FPS): a highly effective approach in fMRI brain mapping. Brain Structure and Function, 2018, 223, 2433-2454.	2.3	45

#	Article	IF	CITATIONS
73	Ultra-coarse, single-glance human face detection in a dynamic visual stream. Neurolmage, 2018, 176, 465-476.	4.2	25
74	Selective Attention to Faces in a Rapid Visual Stream: Hemispheric Differences in Enhancement and Suppression of Category-selective Neural Activity. Journal of Cognitive Neuroscience, 2018, 30, 393-410.	2.3	22
75	A face identity hallucination (palinopsia) generated by intracerebral stimulation of the face-selective right lateral fusiform cortex. Cortex, 2018, 99, 296-310.	2.4	41
76	An objective neural signature of rapid perspective taking. Social Cognitive and Affective Neuroscience, 2018, 13, 72-79.	3.0	19
77	Normative accuracy and response time data for the computerized Benton Facial Recognition Test (BFRT-c). Behavior Research Methods, 2018, 50, 2442-2460.	4.0	56
78	Does Extensive Training at Individuating Novel Objects in Adulthood Lead to Visual Expertise? The Role of Facelikeness. Journal of Cognitive Neuroscience, 2018, 30, 449-467.	2.3	9
79	EEG Frequency-Tagging and Input–Output Comparison in Rhythm Perception. Brain Topography, 2018, 31, 153-160.	1.8	23
80	Immediate stimulus repetition abolishes stimulus expectation and surprise effects in fast periodic visual oddball designs. Biological Psychology, 2018, 138, 110-125.	2,2	16
81	Dissociable effects of inter-stimulus interval and presentation duration on rapid face categorization. Vision Research, 2018, 145, 11-20.	1.4	17
82	Humans Are Visual Experts at Unfamiliar Face Recognition. Trends in Cognitive Sciences, 2018, 22, 471-472.	7.8	34
83	Selective visual representation of letters and words in the left ventral occipito-temporal cortex with intracerebral recordings. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7595-E7604.	7.1	84
84	The impact of stimulus size and orientation on individual face coding in monkey face-selective cortex. Scientific Reports, 2018, 8, 10339.	3.3	8
85	The nature of individual face recognition in preschool children: Insights from a gaze-contingent paradigm. Cognitive Development, 2018, 47, 168-180.	1.3	1
86	Prosopdysgnosia? What could it tell us about the neural organization of face and object recognition?. Cognitive Neuropsychology, 2018, 35, 98-101.	1.1	24
87	Rapid Objective Assessment of Contrast Sensitivity and Visual Acuity With Sweep Visual Evoked Potentials and an Extended Electrode Array., 2018, 59, 1144.		23
88	Damasio's error – Prosopagnosia with intact within ategory object recognition. Journal of Neuropsychology, 2018, 12, 357-388.	1.4	28
89	Tuning functions for automatic detection of brief changes of facial expression in the human brain. Neurolmage, 2018, 179, 235-251.	4.2	25
90	Reduced neural sensitivity for implicit individual face discrimination in autism. Journal of Vision, 2018, 18, 712.	0.3	1

#	Article	IF	CITATIONS
91	Maternal odor shapes rapid face categorization in the 4-month-old infant brain. Journal of Vision, 2018, 18, 787.	0.3	2
92	A neural index of rapid and automatic recognition of face familiarity. Journal of Vision, 2018, 18, 1092.	0.3	0
93	An objective signature of emotional expressions and context integration within a single glance: evidence from electroencephalographic frequency-tagging. Journal of Vision, 2018, 18, 908.	0.3	O
94	Measuring face-name integration with fast periodic visual stimulation. Journal of Vision, 2018, 18, 1173.	0.3	0
95	FPVS reveals an upper visual field advantage for face categorization. Journal of Vision, 2018, 18, 1079.	0.3	O
96	Spatiotemporal dynamics of view-invariant face identity perception. Journal of Vision, 2018, 18, 1080.	0.3	0
97	Do People Have Insight into their Face Recognition Abilities?. Quarterly Journal of Experimental Psychology, 2017, 70, 218-233.	1.1	72
98	Mental arithmetic in the bilingual brain: Language matters. Neuropsychologia, 2017, 101, 17-29.	1.6	19
99	Individual Differences in Face Identity Processing with Fast Periodic Visual Stimulation. Journal of Cognitive Neuroscience, 2017, 29, 1368-1377.	2.3	46
100	Intracerebral evidence of rhythm transform in the human auditory cortex. Brain Structure and Function, 2017, 222, 2389-2404.	2.3	22
101	Rapid Categorization of Human and Ape Faces in 9-Month-Old Infants Revealed by Fast Periodic Visual Stimulation. Scientific Reports, 2017, 7, 12526.	3.3	28
102	Category-selective human brain processes elicited in fast periodic visual stimulation streams are immune to temporal predictability. Neuropsychologia, 2017, 104, 182-200.	1.6	43
103	Visual adaptation reveals an objective electrophysiological measure of high-level individual face discrimination. Scientific Reports, 2017, 7, 3269.	3.3	11
104	Functional selectivity for face processing in the temporal voice area of early deaf individuals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6437-E6446.	7.1	68
105	Being BOLD: The neural dynamics of face perception. Human Brain Mapping, 2017, 38, 120-139.	3 . 6	16
106	Commentary: The Code for Facial Identity in the Primate Brain. Frontiers in Human Neuroscience, 2017, 11, 550.	2.0	3
107	Being BOLD: The neural dynamics of face perception. Journal of Vision, 2017, 17, 1261.	0.3	0
108	A highly effective approach in fMRI brain mapping of visual categorization. Journal of Vision, 2017, 17, 1260.	0.3	0

#	Article	IF	CITATIONS
109	Selective attention modulates face categorization differently in the left and right hemispheres. Journal of Vision, 2017, 17, 32.	0.3	O
110	Left cortical specialization for visual letter strings predicts rudimentary knowledge of letter-sound association in preschoolers. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 8544-8549.	7.1	77
111	Facelikeness matters: A parametric multipart object set to understand the role of spatial configuration in visual recognition. Visual Cognition, 2016, 24, 406-421.	1.6	8
112	All new kids on the block? Impaired holistic processing of personally familiar faces in a kindergarten teacher with acquired prosopagnosia. Visual Cognition, 2016, 24, 321-355.	1.6	17
113	A Qualitative Impairment in Face Perception in Alzheimer's Disease: Evidence from a Reduced Face Inversion Effect. Journal of Alzheimer's Disease, 2016, 51, 1225-1236.	2.6	25
114	A single glance at natural face images generate larger and qualitatively different category-selective spatio-temporal signatures than other ecologically-relevant categories in the human brain. Neurolmage, 2016, 137, 21-33.	4.2	62
115	Visual adaptation provides objective electrophysiological evidence of facial identity discrimination. Cortex, 2016, 80, 35-50.	2.4	39
116	The Face-Processing Network Is Resilient to Focal Resection of Human Visual Cortex. Journal of Neuroscience, 2016, 36, 8425-8440.	3.6	49
117	Uncovering the neural magnitude and spatio-temporal dynamics of natural image categorization in a fast visual stream. Neuropsychologia, 2016, 91, 9-28.	1.6	141
118	At a Single Glance: Fast Periodic Visual Stimulation Uncovers the Spatio-Temporal Dynamics of Brief Facial Expression Changes in the Human Brain. Cerebral Cortex, 2016, 27, 4106-4123.	2.9	51
119	An objective electrophysiological marker of face individualisation impairment in acquired prosopagnosia with fast periodic visual stimulation. Neuropsychologia, 2016, 83, 100-113.	1.6	69
120	A face-selective ventral occipito-temporal map of the human brain with intracerebral potentials. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4088-97.	7.1	121
121	Frequency tagging yields an objective neural signature of Gestalt formation. Brain and Cognition, 2016, 104, 15-24.	1.8	30
122	Beyond the core face-processing network: intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Journal of Vision, 2016, 16, 385.	0.3	3
123	Separable effects of inversion and contrast-reversal on face detection thresholds and response functions: A sweep VEP study. Journal of Vision, 2015, 15, 11-11.	0.3	13
124	The steady-state visual evoked potential in vision research: A review. Journal of Vision, 2015, 15, 4.	0.3	817
125	Rapid categorization of natural face images in the infant right hemisphere. ELife, 2015, 4, e06564.	6.0	136
126	Beyond the core face-processing network: Intracerebral stimulation of a face-selective area in the right anterior fusiform gyrus elicits transient prosopagnosia. Cortex, 2015, 72, 140-155.	2.4	72

#	Article	IF	Citations
127	Global Shape Information Increases but Color Information Decreases the Composite Face Effect. Perception, 2015, 44, 511-528.	1.2	15
128	Neural microgenesis of personally familiar face recognition. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4835-44.	7.1	85
129	Face inversion and acquired prosopagnosia reduce the size of the perceptual field of view. Cognition, 2015, 136, 403-408.	2.2	19
130	The effect of contrast polarity reversal on face detection: Evidence of perceptual asymmetry from sweep VEP. Vision Research, 2015, 108, 8-19.	1.4	13
131	Tracking the evolution of crossmodal plasticity and visual functions before and after sight restoration. Journal of Neurophysiology, 2015, 113, 1727-1742.	1.8	19
132	The early visual encoding of a face (N170) is viewpoint-dependent: A parametric ERP-adaptation study. Biological Psychology, 2015, 106, 18-27.	2.2	30
133	Fast periodic presentation of natural images reveals a robust face-selective electrophysiological response in the human brain. Journal of Vision, 2015, 15, 18-18.	0.3	141
134	The neural basis of perceiving person interactions. Cortex, 2015, 70, 5-20.	2.4	50
135	Holistic face perception: Mind the gap!. Visual Cognition, 2015, 23, 379-398.	1.6	20
136	Category search speeds up face-selective fMRI responses in a non-hierarchical cortical face network. Cortex, 2015, 66, 69-80.	2.4	7
137	The effect of face inversion for neurons inside and outside fMRI-defined face-selective cortical regions. Journal of Neurophysiology, 2015, 113, 1644-1655.	1.8	34
138	Neural Correlate of the Thatcher Face Illusion in a Monkey Face-Selective Patch. Journal of Neuroscience, 2015, 35, 9872-9878.	3.6	32
139	Temporal dynamics of repetition suppression to individual faces presented at a fast periodic rate. International Journal of Psychophysiology, 2015, 98, 35-43.	1.0	13
140	A robust index of lexical representation in the left occipito-temporal cortex as evidenced by EEG responses to fast periodic visual stimulation. Neuropsychologia, 2015, 66, 18-31.	1.6	83
141	Understanding face perception by means of prosopagnosia and neuroimaging. Frontiers in Bioscience - Elite, 2014, 6, 258-307.	1.8	78
142	Understanding face perception by means of prosopagnosia and neuroimaging. Frontiers in Bioscience - Elite, 2014, E6, 258.	1.8	6
143	Intracerebral electrical stimulation of a face-selective area in the right inferior occipital cortex impairs individual face discrimination. Neurolmage, 2014, 99, 487-497.	4.2	59
144	Self-face hallucination evoked by electrical stimulation of the human brain. Neurology, 2014, 83, 336-338.	1.1	20

#	Article	IF	Citations
145	Face Familiarity Decisions Take 200 msec in the Human Brain: Electrophysiological Evidence from a Go/No-go Speeded Task. Journal of Cognitive Neuroscience, 2014, 26, 81-95.	2.3	59
146	Right hemispheric dominance of visual phenomena evoked by intracerebral stimulation of the human visual cortex. Human Brain Mapping, 2014, 35, 3360-3371.	3.6	46
147	Supra-additive contribution of shape and surface information to individual face discrimination as revealed by fast periodic visual stimulation. Journal of Vision, 2014, 14, 15-15.	0.3	49
148	Face-specific impairment in holistic perception following focal lesion of the right anterior temporal lobe. Neuropsychologia, 2014, 56, 312-333.	1.6	66
149	Understanding face perception by means of human electrophysiology. Trends in Cognitive Sciences, 2014, 18, 310-318.	7.8	236
150	Dissociation of partâ€based and integrated neural responses to faces by means of electroencephalographic frequency tagging. European Journal of Neuroscience, 2014, 40, 2987-2997.	2.6	34
151	The effect of parametric stimulus size variation on individual face discrimination indexed by fast periodic visual stimulation. BMC Neuroscience, 2014, 15, 87.	1.9	60
152	Understanding individual face discrimination by means of fast periodic visual stimulation. Experimental Brain Research, 2014, 232, 1599-1621.	1.5	109
153	An objective index of individual face discrimination in the right occipito-temporal cortex by means of fast periodic oddball stimulation. Neuropsychologia, 2014, 52, 57-72.	1.6	183
154	Temporal frequency tuning of cortical face-sensitive areas for individual face perception. NeuroImage, 2014, 90, 256-265.	4.2	31
155	Differential Reliance on the Duchenne Marker During Smile Evaluations and Person Judgments. Journal of Nonverbal Behavior, 2013, 37, 69-77.	1.0	25
156	Cerebral lateralization of face-sensitive areas in left-handers: Only the FFA does not get it right. Cortex, 2013, 49, 2583-2589.	2.4	81
157	The contribution of shape and surface information in the other-race face effect. Visual Cognition, 2013, 21, 1202-1223.	1.6	12
158	The 6Hz fundamental stimulation frequency rate for individual face discrimination in the right occipito-temporal cortex. Neuropsychologia, 2013, 51, 2863-2875.	1.6	91
159	Electrophysiological correlates of visual adaptation and sensory competition. Neuropsychologia, 2013, 51, 1488-1496.	1.6	13
160	The composite face illusion: A whole window into our understanding of holistic face perception. Visual Cognition, 2013, 21, 139-253.	1.6	303
161	Face Perception is Whole or None: Disentangling the Role of Spatial Contiguity and Interfeature Distances in the Composite Face Illusion. Perception, 2013, 42, 1013-1026.	1.2	15
162	An objective signature for visual binding of face parts in the human brain. Journal of Vision, 2013, 13, 6-6.	0.3	46

#	Article	IF	Citations
163	Defining face perception areas in the human brain: A large-scale factorial fMRI face localizer analysis. Brain and Cognition, 2012, 79, 138-157.	1.8	236
164	Developmental changes in face recognition during childhood: Evidence from upright and inverted faces. Cognitive Development, 2012, 27, 17-27.	1.3	80
165	A steady-state visual evoked potential approach to individual face perception: Effect of inversion, contrast-reversal and temporal dynamics. Neurolmage, 2012, 63, 1585-1600.	4.2	117
166	Normal face-based judgements of social characteristics despite severely impaired holistic face processing. Visual Cognition, 2012, 20, 865-882.	1.6	11
167	Early Deafness Increases the Face Inversion Effect But Does Not Modulate the Composite Face Effect. Frontiers in Psychology, 2012, 3, 124.	2.1	16
168	An objective method for measuring face detection thresholds using the sweep steady-state visual evoked response. Journal of Vision, 2012, 12, 18-18.	0.3	61
169	Extensive visual training in adulthood significantly reduces the face inversion effect. Journal of Vision, 2012, 12, 14-14.	0.3	33
170	Holistic processing of shape cues in face identification: Evidence from face inversion, composite faces, and acquired prosopagnosia. Visual Cognition, 2011, 19, 1003-1034.	1.6	32
171	Stereotype-based modulation of person perception. Neurolmage, 2011, 57, 549-557.	4.2	54
172	Hemisphere-dependent holistic processing of familiar faces. Brain and Cognition, 2011, 78, 7-13.	1.8	32
173	The N170: Understanding the Time Course of Face Perception in the Human Brain. , 2011, , .		96
174	Holistic Face Categorization in Higher Order Visual Areas of the Normal and Prosopagnosic Brain: Toward a Non-Hierarchical View of Face Perception. Frontiers in Human Neuroscience, 2011, 4, 225.	2.0	114
175	Early (N170/M170) face-sensitivity despite right lateral occipital brain damage in acquired prosopagnosia. Frontiers in Human Neuroscience, 2011, 5, 138.	2.0	38
176	The Speed of Recognition of Personally Familiar Faces. Perception, 2011, 40, 437-449.	1.2	76
177	Impairment of holistic face perception following right occipito-temporal damage in prosopagnosia: Converging evidence from gaze-contingency. Neuropsychologia, 2011, 49, 3145-3150.	1.6	49
178	ERP evidence for the speed of face categorization in the human brain: Disentangling the contribution of low-level visual cues from face perception. Vision Research, 2011, 51, 1297-1311.	1.4	283
179	Early electrophysiological correlates of adaptation to personally familiar and unfamiliar faces across viewpoint changes. Brain Research, 2011, 1387, 85-98.	2.2	34
180	Holistic processing impairment can be restricted to faces in acquired prosopagnosia: Evidence from the global/local Navon effect. Journal of Neuropsychology, 2011, 5, 1-14.	1.4	36

#	Article	IF	Citations
181	Face categorization in visual scenes may start in a higher order area of the right fusiform gyrus: evidence from dynamic visual stimulation in neuroimaging. Journal of Neurophysiology, 2011, 106, 2720-2736.	1.8	48
182	When perception and attention collide: Neural processing in EBA and FBA. Cognitive Neuroscience, 2011, 2, 209-210.	1.4	2
183	Robust sensitivity to facial identity in the right human occipito-temporal cortex as revealed by steady-state visual-evoked potentials. Journal of Vision, 2011, 11, 16-16.	0.3	134
184	Visual Expertise with Pictures of Cars Correlates with RT Magnitude of the Car Inversion Effect. Perception, 2010, 39, 173-183.	1.2	52
185	Impaired holistic processing of unfamiliar individual faces in acquired prosopagnosia. Neuropsychologia, 2010, 48, 933-944.	1.6	110
186	Acquired prosopagnosia as a face-specific disorder: Ruling out the general visual similarity account. Neuropsychologia, 2010, 48, 2051-2067.	1.6	98
187	Whole not hole: Expert face recognition requires holistic perception. Neuropsychologia, 2010, 48, 2620-2629.	1.6	93
188	Holistic perception of the individual face is specific and necessary: Evidence from an extensive case study of acquired prosopagnosia. Neuropsychologia, 2010, 48, 4057-4092.	1.6	133
189	Misaligning face halves increases and delays the N170 specifically for upright faces: Implications for the nature of early face representations. Brain Research, 2010, 1318, 96-109.	2.2	51
190	Personally familiar faces are perceived categorically in faceâ€selective regions other than the fusiform face area. European Journal of Neuroscience, 2010, 32, 1587-1598.	2.6	29
191	The role of experience during childhood in shaping the otherâ€race effect. Developmental Science, 2010, 13, 181-187.	2.4	113
192	Fixation patterns during recognition of personally familiar and unfamiliar faces. Frontiers in Psychology, 2010, 1, 20.	2.1	58
193	Early visually evoked electrophysiological responses over the human brain (P1, N170) show stable patterns of face-sensitivity from 4 years to adulthood. Frontiers in Human Neuroscience, 2010, 3, 67.	2.0	125
194	Feature-Based Processing of Personally Familiar Faces in Prosopagnosia: Evidence from Eye-Gaze Contingency. Behavioural Neurology, 2010, 23, 255-257.	2.1	11
195	Acquired Prosopagnosia Is Not due to a General Impairment in Fine-Grained Recognition of Exemplars of a Visually Homogeneous Category. Behavioural Neurology, 2010, 23, 229-231.	2.1	13
196	Holistic perception of individual faces in the right middle fusiform gyrus as evidenced by the composite face illusion. Journal of Vision, 2010, 10, 1-16.	0.3	124
197	Face inversion impairs holistic perception: Evidence from gaze-contingent stimulation. Journal of Vision, 2010, 10, 10-10.	0.3	113
198	Monitoring Coordination during Bimanual Movements: Where Is the Mastermind?. Journal of Cognitive Neuroscience, 2010, 22, 526-542.	2.3	35

#	Article	IF	CITATIONS
199	Holistic face encoding is modulated by perceived face race: Evidence from perceptual adaptation. Visual Cognition, 2010, 18, 434-455.	1.6	40
200	Impaired processing of relative distances between features and of the eye region in acquired prosopagnosiaâ€"Two sides of the same holistic coin?. Cortex, 2010, 46, 374-389.	2.4	52
201	Electrophysiological correlates of the composite face illusion: Disentangling perceptual and decisional components of holistic face processing in the human brain. Brain and Cognition, 2010, 74, 225-238.	1.8	42
202	Acquired prosopagnosia abolishes the face inversion effect. Cortex, 2010, 46, 965-981.	2.4	106
203	Look who's talking: pre-verbal infants' perception of face-to-face and back-to-back social interactions. Frontiers in Psychology, 2010, 1, 159.	2.1	26
204	Acquired prosopagnosia is not due to a general impairment in fine-grained recognition of exemplars of a visually homogeneous category. Behavioural Neurology, 2010, 23, 229-31.	2.1	0
205	The initial representation of individual faces in the right occipito-temporal cortex is holistic: Electrophysiological evidence from the composite face illusion. Journal of Vision, 2009, 9, 8-8.	0.3	116
206	Early adaptation to repeated unfamiliar faces across viewpoint changes in the right hemisphere: Evidence from the N170 ERP component. Neuropsychologia, 2009, 47, 639-643.	1.6	123
207	Abnormal face identity coding in the middle fusiform gyrus of two brain-damaged prosopagnosic patients. Neuropsychologia, 2009, 47, 2584-2592.	1.6	51
208	Is the loss of diagnosticity of the eye region of the face a common aspect of acquired prosopagnosia?. Journal of Neuropsychology, 2009, 3, 69-78.	1.4	33
209	Face inversion disrupts the perception of vertical relations between features in the right human occipitoâ€temporal cortex. Journal of Neuropsychology, 2009, 3, 45-67.	1.4	30
210	Distinguishing the cause and consequence of face inversion: The perceptual field hypothesis. Acta Psychologica, 2009, 132, 300-312.	1.5	190
211	Right anterior temporal lobe atrophy and person-based semantic defect: A detailed case study. Neurocase, 2009, 15, 485-508.	0.6	47
212	Recognizing an individual face: 3D shape contributes earlier than 2D surface reflectance information. NeuroImage, 2009, 47, 1809-1818.	4.2	63
213	Holistic face processing can be independent of gaze behaviour: Evidence from the composite face illusion. Journal of Neuropsychology, 2008, 2, 183-195.	1.4	28
214	Reduced fixation on the upper area of personally familiar faces following acquired prosopagnosia. Journal of Neuropsychology, 2008, 2, 245-268.	1.4	92
215	Picture-plane inversion leads to qualitative changes of face perception. Acta Psychologica, 2008, 128, 274-289.	1.5	439
216	Newborns' face recognition is based on spatial frequencies below 0.5 cycles per degree. Cognition, 2008, 106, 444-454.	2.2	104

#	Article	IF	CITATIONS
217	Does physical interstimulus variance account for early electrophysiological face sensitive responses in the human brain? Ten lessons on the N170. NeuroImage, 2008, 39, 1959-1979.	4.2	486
218	Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia. Neurolmage, 2008, 40, 423-426.	4.2	140
219	The roles of "face―and "non-face―areas during individual face perception: Evidence by fMRI adaptation in a brain-damaged prosopagnosic patient. NeuroImage, 2008, 40, 318-332.	4.2	67
220	Recognizing rotated faces and Greebles: What properties drive the face inversion effect?. Visual Cognition, 2008, 16, 754-784.	1.6	29
221	Nonlinear relationship between holistic processing of individual faces and picture-plane rotation: Evidence from the face composite illusion. Journal of Vision, 2008, 8, 3.	0.3	117
222	The Speed of Orthographic Processing during Lexical Decision: Electrophysiological Evidence for Independent Coding of Letter Identity and Letter Position in Visual Word Recognition. Journal of Cognitive Neuroscience, 2008, 20, 1283-1299.	2.3	19
223	Category specificity in early perception: face and word N170 responses differ in both lateralization and habituation properties. Frontiers in Human Neuroscience, 2008, 2, 18.	2.0	118
224	Evidence for Individual Face Discrimination in Non-Face Selective Areas of the Visual Cortex in Acquired Prosopagnosia. Behavioural Neurology, 2008, 19, 75-79.	2.1	8
225	Prolonged Visual Experience in Adulthood Modulates Holistic Face Perception. PLoS ONE, 2008, 3, e2317.	2.5	63
226	Long-term Expertise with Artificial Objects Increases Visual Competition with Early Face Categorization Processes. Journal of Cognitive Neuroscience, 2007, 19, 543-555.	2.3	71
227	Face inversion disproportionately impairs the perception of vertical but not horizontal relations between features Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 995-1002.	0.9	110
228	Prosopagnosia. , 2007, , 315-334.		20
229	Holistic face processing is mature at 4 years of age: Evidence from the composite face effect. Journal of Experimental Child Psychology, 2007, 96, 57-70.	1.4	162
230	Understanding the functional neuroanatomy of acquired prosopagnosia. NeuroImage, 2007, 35, 836-852.	4.2	149
231	Early electrophysiological responses to multiple face orientations correlate with individual discrimination performance in humans. NeuroImage, 2007, 36, 863-876.	4.2	130
232	The time course of the inversion effect during individual face discrimination. Journal of Vision, 2007, 7, 3.	0.3	160
233	Controlling interstimulus perceptual variance does not abolish N170 face sensitivity. Nature Neuroscience, 2007, 10, 801-802.	14.8	77
234	Race Categorization Modulates Holistic Face Encoding. Cognitive Science, 2007, 31, 911-924.	1.7	93

#	Article	IF	Citations
235	The fusiform face area is tuned for curvilinear patterns with more high-contrasted elements in the upper part. Neurolmage, 2006, 31, 313-319.	4.2	62
236	Faces are represented holistically in the human occipito-temporal cortex. NeuroImage, 2006, 32, 1385-1394.	4.2	257
237	Same-race faces are perceived more holistically than other-race faces. Visual Cognition, 2006, 14, 55-73.	1.6	196
238	Holistic Processing Is Finely Tuned for Faces of One's Own Race. Psychological Science, 2006, 17, 608-615.	3.3	397
239	The Speed of Individual Face Categorization. Psychological Science, 2006, 17, 485-492.	3.3	146
240	Early selection of diagnostic facial information in the human visual cortex. Vision Research, 2006, 46, 800-813.	1.4	28
241	Recovery from adaptation to facial identity is larger for upright than inverted faces in the human occipito-temporal cortex. Neuropsychologia, 2006, 44, 912-922.	1.6	97
242	Faces are "spatial"-holistic face perception is supported by low spatial frequencies Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 1023-1039.	0.9	322
243	The time course of visual competition to the presentation of centrally fixated faces. Journal of Vision, 2006, 6, 6.	0.3	25
244	Impaired Face Discrimination in Acquired Prosopagnosia Is Associated with Abnormal Response to Individual Faces in the Right Middle Fusiform Gyrus. Cerebral Cortex, 2006, 16, 574-586.	2.9	174
245	Electrophysiological Evidence for Temporal Dissociation between Spatial Attention and Sensory Competition during Human Face Processing. Cerebral Cortex, 2006, 17, 1055-1065.	2.9	49
246	The Respective Role of Low and High Spatial Frequencies in Supporting Configural and Featural Processing of Faces. Perception, 2005, 34, 77-86.	1.2	215
247	Diagnostic colours contribute to the early stages of scene categorization: Behavioural and neurophysiological evidence. Visual Cognition, 2005, 12, 878-892.	1.6	99
248	Does Prosopagnosia Take the Eyes Out of Face Representations? Evidence for a Defect in Representing Diagnostic Facial Information following Brain Damage. Journal of Cognitive Neuroscience, 2005, 17, 1652-1666.	2.3	174
249	The face-sensitive N170 and VPP components manifest the same brain processes: The effect of reference electrode site. Clinical Neurophysiology, 2005, 116, 2613-2631.	1.5	372
250	Spatial attention triggered by eye gaze enhances and speeds up visual processing in upper and lower visual fields beyond early striate visual processing. Clinical Neurophysiology, 2005, 116, 2565-2576.	1.5	31
251	Revisiting Snodgrass and Vanderwart's Object Pictorial Set: The Role of Surface Detail in Basic-Level Object Recognition. Perception, 2004, 33, 217-236.	1.2	780
252	Evidence for perceptual deficits in associative visual (prosop)agnosia: a single-case study. Neuropsychologia, 2004, 42, 597-612.	1.6	89

#	Article	IF	Citations
253	Electrophysiological evidence for differential processing of numerical quantity and order in humans. Cognitive Brain Research, 2004, 21, 22-38.	3.0	137
254	Human non-phase-locked gamma oscillations in experience-based perception of visual scenes. Neuroscience Letters, 2004, 354, 14-17.	2.1	30
255	Visual expertise with nonface objects leads to competition with the early perceptual processing of faces in the human occipitotemporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14521-14526.	7.1	138
256	Perception of static eye gaze direction facilitates subsequent early visual processing. Clinical Neurophysiology, 2004, 115, 1161-1168.	1.5	45
257	Parametric design and correlational analyses help integrating fMRI and electrophysiological data during face processing. NeuroImage, 2004, 22, 1587-1595.	4.2	128
258	Event-related potentials and time course of the †other-race†face classification advantage. NeuroReport, 2004, 15, 905-910.	1.2	154
259	Concurrent processing reveals competition between visual representations of faces. NeuroReport, 2004, 15, 2417-2421.	1.2	63
260	Spatial scale contribution to early visual differences between face and object processing. Cognitive Brain Research, 2003, 16, 416-424.	3.0	171
261	The functionally defined right occipital and fusiform "face areas―discriminate novel from visually familiar faces. Neurolmage, 2003, 19, 877-883.	4.2	164
262	A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain, 2003, 126, 2381-2395.	7.6	611
263	Early lateralization and orientation tuning for face, word, and object processing in the visual cortex. Neurolmage, 2003, 20, 1609-1624.	4.2	678
264	How Does the Brain Process Upright and Inverted Faces?. Behavioral and Cognitive Neuroscience Reviews, 2002, 1, 63-75.	3.9	333
265	Is sex categorization from faces really parallel to face recognition?. Visual Cognition, 2002, 9, 1003-1020.	1.6	59
266	A defense of the subordinate-level expertise account for the N170 component. Cognition, 2002, 85, 189-196.	2.2	88
267	Spatial attention triggered by eye gaze increases and speeds up early visual activity. NeuroReport, 2001, 12, 2381-2386.	1.2	105
268	How Does the Brain Discriminate Familiar and Unfamiliar Faces?: A PET Study of Face Categorical Perception. Journal of Cognitive Neuroscience, 2001, 13, 1019-1034.	2.3	109
269	The time-course of intermodal binding between seeing and hearing affective information. NeuroReport, 2000, 11, 1329-1333.	1.2	161
270	Hemispheric Asymmetries for Whole-Based and Part-Based Face Processing in the Human Fusiform Gyrus. Journal of Cognitive Neuroscience, 2000, 12, 793-802.	2.3	388

#	Article	IF	CITATIONS
271	Functional Imaging of Visual Semantic Processing in the Human Brain. Cortex, 2000, 36, 579-591.	2.4	11
272	Prosopagnosia., 0,, 231-246.		0