Lianhai Zu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/327908/publications.pdf Version: 2024-02-01

Ι ιλ ΝΗΛΙ ΖΙΙ

#	Article	IF	CITATIONS
1	Reversible multi-electron redox chemistry ofÂï€-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nature Energy, 2017, 2, .	19.8	486
2	Black Phosphorus Quantum Dot/Ti ₃ C ₂ MXene Nanosheet Composites for Efficient Electrochemical Lithium/Sodiumâ€ion Storage. Advanced Energy Materials, 2018, 8, 1801514.	10.2	251
3	Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation. Matter, 2020, 3, 2124-2137.	5.0	177
4	Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries. Nano Energy, 2018, 46, 20-28.	8.2	162
5	Mesoporous Materials for Electrochemical Energy Storage and Conversion. Advanced Energy Materials, 2020, 10, 2002152.	10.2	162
6	Ti ₃ C ₂ T _{<i>x</i>/sub> MXene Nanosheets as a Robust and Conductive Tight on Si Anodes Significantly Enhance Electrochemical Lithium Storage Performance. ACS Nano, 2020, 14, 5111-5120.}	7.3	157
7	A polymer-direct-intercalation strategy for MoS2/carbon-derived heteroaerogels with ultrahigh pseudocapacitance. Nature Communications, 2019, 10, 1372.	5.8	155
8	CoPSe: A New Ternary Anode Material for Stable and Highâ€Rate Sodium/Potassiumâ€lon Batteries. Advanced Materials, 2021, 33, e2007262.	11.1	133
9	Covalent Assembly of MoS ₂ Nanosheets with SnS Nanodots as Linkages for Lithium/Sodiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 14621-14627.	7.2	124
10	Direct Superassemblies of Freestanding Metal–Carbon Frameworks Featuring Reversible Crystalline-Phase Transformation for Electrochemical Sodium Storage. Journal of the American Chemical Society, 2016, 138, 16533-16541.	6.6	120
11	Visibleâ€Light Responsive TiO ₂ â€Based Materials for Efficient Solar Energy Utilization. Advanced Energy Materials, 2021, 11, 2003303.	10.2	118
12	Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production. Nano Energy, 2019, 66, 104113.	8.2	107
13	A titanium-based photo-Fenton bifunctional catalyst of mp-MXene/TiO _{2â^x} nanodots for dramatic enhancement of catalytic efficiency in advanced oxidation processes. Chemical Communications, 2018, 54, 11622-11625.	2.2	105
14	Self-Assembly of Ir-Based Nanosheets with Ordered Interlayer Space for Enhanced Electrocatalytic Water Oxidation. Journal of the American Chemical Society, 2022, 144, 2208-2217.	6.6	103
15	Antipulverization Electrode Based on Low arbon Tripleâ€Shelled Superstructures for Lithiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1701494.	11.1	92
16	Siliconâ€Based Selfâ€Assemblies for High Volumetric Capacity Liâ€Ion Batteries via Effective Stress Management. Advanced Functional Materials, 2020, 30, 2002980.	7.8	76
17	One-pot mass preparation of MoS ₂ /C aerogels for high-performance supercapacitors and lithium-ion batteries. Nanoscale, 2017, 9, 10059-10066.	2.8	60
18	Hybrid Anatase/Rutile Nanodots-Embedded Covalent Organic Frameworks with Complementary Polysulfide Adsorption for High-Performance Lithium–Sulfur Batteries. ACS Central Science, 2019, 5, 1876-1883.	5.3	59

Lianhai Zu

#	Article	IF	CITATIONS
19	Zeroâ€Strain Highâ€Capacity Silicon/Carbon Anode Enabled by a MOFâ€Derived Spaceâ€Confined Singleâ€Atom Catalytic Strategy for Lithiumâ€Ion Batteries. Advanced Materials, 2022, 34, e2200894.	11.1	57
20	Spaceâ€Confined Atomic Clusters Catalyze Superassembly of Silicon Nanodots within Carbon Frameworks for Use in Lithiumâ€lon Batteries. Angewandte Chemie - International Edition, 2020, 59, 3137-3142.	7.2	52
21	Mesoporous TiO2/TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage. IScience, 2018, 3, 149-160.	1.9	45
22	Synthesis of Ni/NiO@MoO _{3â^'} <i>_x</i> Composite Nanoarrays for High Current Density Hydrogen Evolution Reaction. Advanced Energy Materials, 2022, 12, .	10.2	45
23	Constructing Unique Mesoporous Carbon Superstructures via Monomicelle Interface Confined Assembly. Journal of the American Chemical Society, 2022, 144, 11767-11777.	6.6	41
24	Amorphous Semiconductor Nanowires Created by Site-Specific Heteroatom Substitution with Significantly Enhanced Photoelectrochemical Performance. ACS Nano, 2016, 10, 7882-7891.	7.3	32
25	Precisely Designed Mesoscopic Titania for High-Volumetric-Density Pseudocapacitance. Journal of the American Chemical Society, 2021, 143, 14097-14105.	6.6	30
26	In situ synergistic crystallization-induced synthesis of novel Au nanostar-encrusted ZnO mesocrystals with high-quality heterojunctions for high-performance gas sensors. Journal of Materials Chemistry A, 2015, 3, 10209-10218.	5.2	29
27	Stressâ€Relieved Nanowires by Silicon Substitution for Highâ€Capacity and Stable Lithium Storage. Advanced Energy Materials, 2018, 8, 1702805.	10.2	29
28	Light-Concentrating Plasmonic Au Superstructures with Significantly Visible-Light-Enhanced Catalytic Performance. ACS Applied Materials & Interfaces, 2015, 7, 8200-8208.	4.0	28
29	Preparation of Ag@Ag 3 PO 4 @ZnO ternary heterostructures for photocatalytic studies. Journal of Colloid and Interface Science, 2015, 453, 36-41.	5.0	27
30	Ultrapermeable Composite Membranes Enhanced Via Doping with Amorphous MOF Nanosheets. ACS Central Science, 2021, 7, 671-680.	5.3	27
31	New Structural Insights into Densely Assembled Reduced Graphene Oxide Membranes. Advanced Functional Materials, 2022, 32, .	7.8	27
32	Three-Dimensional Hierarchical Porous Nanotubes Derived from Metal-Organic Frameworks for Highly Efficient Overall Water Splitting. IScience, 2020, 23, 100761.	1.9	26
33	Covalent Assembly of MoS ₂ Nanosheets with SnS Nanodots as Linkages for Lithium/Sodiumâ€lon Batteries. Angewandte Chemie, 2020, 132, 14729-14735.	1.6	26
34	Spaceâ€Confined Atomic Clusters Catalyze Superassembly of Silicon Nanodots within Carbon Frameworks for Use in Lithiumâ€lon Batteries. Angewandte Chemie, 2020, 132, 3161-3166.	1.6	17
35	Physical Aging Investigations of a Spirobisindane-Locked Polymer of Intrinsic Microporosity. , 2020, 2, 993-998.		11
36	Hydrogen evolution reactions boosted by bridge bonds between electrocatalysts and electrodes. Nanoscale, 2018, 10, 4068-4076.	2.8	10

#	Article	IF	CITATIONS
37	Spinous TiO2 and Au@TiO2 octahedral nanocages: Amorphisity-to-crystallinity transition-driven surface structural construction and photocatalytic study. Journal of Colloid and Interface Science, 2014, 426, 90-98.	5.0	9
38	Nanospherical Surface-Supported Seeded Growth of Au Nanowires: Investigation on a New Growth Mechanism and High-Performance Hydrogen Peroxide Sensors. Particle and Particle Systems Characterization, 2015, 32, 498-504.	1.2	4