## Toshio Sakai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3278819/publications.pdf Version: 2024-02-01



Τοςμίο ζλέλι

| #  | Article                                                                                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Colloidal Stability of Emulsifier-free Triolein-in-Water Emulsions: Effects of Temperature. Journal of<br>Oleo Science, 2022, 71, 75-81.                                                                                                                                                                                                           | 1.4 | 4         |
| 2  | Nanopore structure analysis of single wall carbon nanotube xerogels and cryogels. Adsorption, 2021, 27, 673-681.                                                                                                                                                                                                                                   | 3.0 | 1         |
| 3  | Potential of High-Powered Bath-Type Ultrasonicator for Manufacturing of Emulsifier-Free Emulsions.<br>Journal of the Japan Society of Colour Material, 2021, 94, 245-251.                                                                                                                                                                          | 0.1 | 3         |
| 4  | Unimodal sized silica nanocapsules produced through water-in-oil emulsions prepared by sequential irradiation of kilo- and submega-hertz ultrasounds. RSC Advances, 2021, 11, 22921-22928.                                                                                                                                                         | 3.6 | 3         |
| 5  | Pore-Mouth Structure of Highly Agglomerated Detonation Nanodiamonds. Nanomaterials, 2021, 11, 2772.                                                                                                                                                                                                                                                | 4.1 | 1         |
| 6  | Emulsifier-Free Emulsions. Journal of the Japan Society of Colour Material, 2020, 93, 105-110.                                                                                                                                                                                                                                                     | 0.1 | 1         |
| 7  | Unusual hygroscopic nature of nanodiamonds in comparison with well-known porous materials.<br>Journal of Colloid and Interface Science, 2019, 549, 133-139.                                                                                                                                                                                        | 9.4 | 12        |
| 8  | Colloidal stabilization of surfactant-free emulsion by control of molecular diffusion among droplets. Journal of the Taiwan Institute of Chemical Engineers, 2018, 92, 123-128.                                                                                                                                                                    | 5.3 | 9         |
| 9  | Organogel-in-Water Emulsions as Thermal-Energy Storage and Heat Transfer Fluids. Journal of the<br>Japan Society of Colour Material, 2018, 91, 85-88.                                                                                                                                                                                              | 0.1 | 1         |
| 10 | Hexadecane-in-water emulsions as thermal-energy storage and heat transfer fluids: Connections<br>between phase-transition temperature and period of hexadecane droplets dispersed in<br>hexadecane-in-water emulsions and characteristics of surfactants. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2017, 529, 394-402. | 4.7 | 15        |
| 11 | In situ observation of Pt oxides on the low index planes of Pt using surface enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 27570-27579.                                                                                                                                                                              | 2.8 | 33        |
| 12 | Adsorption-desorption mediated separation of low concentrated D2O from water with hydrophobic activated carbon fiber. Journal of Colloid and Interface Science, 2017, 508, 14-17.                                                                                                                                                                  | 9.4 | 7         |
| 13 | Water Adsorption Property of Hierarchically Nanoporous Detonation Nanodiamonds. Langmuir, 2017, 33, 11180-11188.                                                                                                                                                                                                                                   | 3.5 | 28        |
| 14 | Colloidal Stability of Emulsifier-Free Oil-in-Water Emulsions:. Journal of the Japan Society of Colour<br>Material, 2017, 90, 375-382.                                                                                                                                                                                                             | 0.1 | 0         |
| 15 | Organic Phase-Change Material-in-Water Emulsions as Thermal-Energy Storage and Transfer Fluids.<br>Journal of the Japan Society of Colour Material, 2017, 90, 168-173.                                                                                                                                                                             | 0.1 | 0         |
| 16 | Potential of Organic Phase Change Material Gel and Organic Phase Change Material Gel-in-Water<br>Emulsion as Heat Storage Materials. Journal of the Japan Society of Colour Material, 2016, 89, 251-257.                                                                                                                                           | 0.1 | 0         |
| 17 | Emulsifier-Free Water-in-Oil Emulsions:. Journal of the Japan Society of Colour Material, 2016, 89, 333-339.                                                                                                                                                                                                                                       | 0.1 | 4         |
| 18 | Metal Nano-coating on Polymer Particles in Aqueous Media Using Ultrasound. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2016, 67, 175-178.                                                                                                                                                                                    | 0.2 | 0         |

Τοςηίο δακαι

| #  | Article                                                                                                                                                                                                                                         | IF               | CITATIONS         |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 19 | Essential Role of Viscosity of SWCNT Inks in Homogeneous Conducting Film Formation. Langmuir, 2016, 32, 6909-6916.                                                                                                                              | 3.5              | 6                 |
| 20 | Preparation of porous thin-film polymethylsiloxane microparticles in a W/O emulsion system. Polymer<br>Journal, 2015, 47, 449-455.                                                                                                              | 2.7              | 4                 |
| 21 | Block copolymer-mediated synthesis of silver nanoparticles from silver ions in aqueous media.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, 84-91.                                                            | 4.7              | 16                |
| 22 | Fabrication of Nanomaterials Using Pluronic-type Surfactants. Oleoscience, 2014, 14, 47-54.                                                                                                                                                     | 0.0              | 0                 |
| 23 | Hydrogen-assisted fabrication of spherical gold nanoparticles through sonochemical reduction of tetrachloride gold(III) ions in water. Ultrasonics Sonochemistry, 2014, 21, 946-950.                                                            | 8.2              | 24                |
| 24 | Encapsulation of a Polyoxometalate into an Organosilica Microcapsule for Highly Active Solid Acid<br>Catalysis. ACS Catalysis, 2014, 4, 73-78.                                                                                                  | 11.2             | 35                |
| 25 | Magnetic Rattle-Type Core–Shell Particles Containing Iron Compounds with Acid Tolerance by Dense<br>Silica. Industrial & Engineering Chemistry Research, 2014, 53, 8759-8765.                                                                   | 3.7              | 10                |
| 26 | Colloidal Stability of Emulsifier-free Water-in-Oil Emulsions: Effect of Oil Property. Journal of the<br>Japan Society of Colour Material, 2014, 87, 387-392.                                                                                   | 0.1              | 4                 |
| 27 | Block copolymer-mediated synthesis of gold nanoparticles in aqueous solutions: Segment effect on gold ion reduction, stabilization, and particle morphology. Journal of Colloid and Interface Science, 2013, 394, 124-131.                      | 9.4              | 26                |
| 28 | Titania/CnTAB Nanoskeleton as adsorbent and photocatalyst for removal of alkylphenols dissolved in water. Journal of Hazardous Materials, 2013, 248-249, 487-495.                                                                               | 12.4             | 11                |
| 29 | Lateral Size Effect on Electrochemical Capacitor Performance of Reduced Graphite Oxide Nanosheets.<br>Electrochemistry, 2013, 81, 873-876.                                                                                                      | 1.4              | 5                 |
| 30 | Autoreduction of tetrachloride gold(III) ions and spontaneous formation of gold nanoparticles in sonicated water. , 2012, , .                                                                                                                   |                  | 1                 |
| 31 | Swellable Microsphere of a Layered Silicate Produced by Using Monodispersed Silica Particles. Journal of Physical Chemistry C, 2012, 116, 21864-21869.                                                                                          | 3.1              | 26                |
| 32 | Multi-shaped Gold Nanoparticles Synthesized Using an Amino-terminated Poly(ethylene) Tj ETQq0 0 0 rgBT /Overl<br>501-503.                                                                                                                       | ock 10 Tf<br>1.3 | 50 227 Td ((<br>4 |
| 33 | A Facile Route of Gold Nanoparticle Synthesis and Surface Modification Using Amino-Terminated<br>Poly(ethylene oxide)-Poly(propylene oxide) Block Copolymers. Journal of Nanoscience and<br>Nanotechnology, 2010, 10, 919-926.                  | 0.9              | 11                |
| 34 | High‥ield Synthesis of Gold Microplates Using Amphiphilic Block Copolymers: Are Lyotropic Liquid<br>Crystals Required?. Macromolecular Symposia, 2010, 289, 18-24.                                                                              | 0.7              | 13                |
| 35 | Preparation of Highly Crystalline TiO2 Nanostructures by Acid-assisted Hydrothermal Treatment of<br>Hexagonal-structured Nanocrystalline Titania/Cetyltrimethyammonium Bromide Nanoskeleton.<br>Nanoscale Research Letters, 2010, 5, 1829-1835. | 5.7              | 182               |
| 36 | Pore-size expansion of hexagonal-structured nanocrystalline titania/CTAB Nanoskeleton using cosolvent organic molecules. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 371, 29-39.                                    | 4.7              | 1                 |

Τοςηίο δακαι

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Facile Preparation of Gold Nanoparticles-Liposome Composites. Journal of Nanoscience and<br>Nanotechnology, 2009, 9, 461-466.                                                                                                                    | 0.9 | 12        |
| 38 | Surfactant- and reducer-free synthesis of gold nanoparticles in aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 347, 18-26.                                                                           | 4.7 | 56        |
| 39 | Surfactant-free emulsions. Current Opinion in Colloid and Interface Science, 2008, 13, 228-235.                                                                                                                                                  | 7.4 | 92        |
| 40 | Formation Mechanism for Hexagonal-Structured Self-Assemblies of Nanocrystalline Titania Templated by Cetyltrimethylammonium Bromide. Journal of Oleo Science, 2008, 57, 629-637.                                                                 | 1.4 | 8         |
| 41 | Ag and Au Monometallic and Bimetallic Colloids:  Morphogenesis in Amphiphilic Block Copolymer<br>Solutions. Chemistry of Materials, 2006, 18, 2577-2583.                                                                                         | 6.7 | 81        |
| 42 | Facile preparation of Ag–Au bimetallic nanonetworks. Materials Letters, 2006, 60, 1983-1986.                                                                                                                                                     | 2.6 | 15        |
| 43 | Mechanism of Gold Metal Ion Reduction, Nanoparticle Growth and Size Control in Aqueous<br>Amphiphilic Block Copolymer Solutions at Ambient Conditions. Journal of Physical Chemistry B, 2005,<br>109, 7766-7777.                                 | 2.6 | 288       |
| 44 | Spontaneous Formation of Gold Nanoparticles in Poly(ethylene oxide)â^'Poly(propylene oxide)<br>Solutions:  Solvent Quality and Polymer Structure Effects. Langmuir, 2005, 21, 8019-8025.                                                         | 3.5 | 89        |
| 45 | Size- and shape-controlled synthesis of colloidal gold through autoreduction of the auric cation by poly(ethylene oxide)–poly(propylene oxide) block copolymers in aqueous solutions at ambient conditions. Nanotechnology, 2005, 16, S344-S353. | 2.6 | 97        |
| 46 | Single-Step Synthesis and Stabilization of Metal Nanoparticles in Aqueous Pluronic Block Copolymer<br>Solutions at Ambient Temperature. Langmuir, 2004, 20, 8426-8430.                                                                           | 3.5 | 274       |
| 47 | Monitoring Growth of Surfactant-Free Nanodroplets Dispersed in Water by Single-Droplet Detection.<br>Journal of Physical Chemistry B, 2003, 107, 2921-2926.                                                                                      | 2.6 | 19        |
| 48 | Dispersion and Stabilization in Water of Droplets of Hydrophobic Organic Liquids with the Addition of Hydrophobic Polymers. Langmuir, 2003, 19, 4063-4069.                                                                                       | 3.5 | 31        |
| 49 | Molecular Diffusion of Oil/Water Emulsions in Surfactant-Free Conditions. Langmuir, 2002, 18, 1985-1990.                                                                                                                                         | 3.5 | 69        |
| 50 | Direct Observation of Flocculation/Coalescence of Metastable Oil Droplets in Surfactant-free Oil/Water Emulsion by Freeze-Fracture Electron Microscopy. Langmuir, 2001, 17, 255-259.                                                             | 3.5 | 42        |
| 51 | Surfactant-free O/W emulsion formation of oleic acid and its esters with ultrasonic dispersion.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 180, 41-53.                                                           | 4.7 | 53        |
| 52 | Dispersion and Stabilizing Effects of n-Hexadecane on Tetralin and Benzene Metastable Droplets in<br>Surfactant-Free Conditions. Langmuir, 1999, 15, 1913-1917.                                                                                  | 3.5 | 42        |