Margit Rosner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3278703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amniotic Fluid Stem Cells: What They Are and What They Can Become. Current Stem Cell Research and Therapy, 2023, 18, 7-16.	0.6	5
2	Stem Cell-Induced Cell Motility: A Removable Obstacle on the Way to Safe Therapies?. Stem Cells Translational Medicine, 2022, 11, 26-34.	1.6	1
3	OUP accepted manuscript. Clinical Chemistry, 2022, , .	1.5	2
4	Human Embryo Models and Drug Discovery. International Journal of Molecular Sciences, 2021, 22, 637.	1.8	8
5	Embryoid research calls for reassessment of legal regulations. Stem Cell Research and Therapy, 2021, 12, 356.	2.4	4
6	Amniotic fluid stem cells and the cell source repertoire for non-invasive prenatal testing. Stem Cell Reviews and Reports, 2021, , 1.	1.7	0
7	Threeâ€dimensional migration of human amniotic fluid stem cells involves mesenchymal and amoeboid modes and is regulated by mTORC1. Stem Cells, 2021, 39, 1718-1732.	1.4	2
8	Fetomaternal microchimerism and genetic diagnosis: On the origins of fetal cells and cell-free fetal DNA in the pregnant woman. Mutation Research - Reviews in Mutation Research, 2021, 788, 108399.	2.4	5
9	Chronic signaling via the metabolic checkpoint kinase mTORC1 induces macrophage granuloma formation and marks sarcoidosis progression. Nature Immunology, 2017, 18, 293-302.	7.0	191
10	Human stem cells alter the invasive properties of somatic cells via paracrine activation of mTORC1. Nature Communications, 2017, 8, 595.	5.8	25
11	Rapamycin-Induced Hypoxia Inducible Factor 2A Is Essential for Chondrogenic Differentiation of Amniotic Fluid Stem Cells. Stem Cells Translational Medicine, 2016, 5, 580-590.	1.6	12
12	Letter to the Editor: Human Pluripotent Stem Cells Release Oncogenic Soluble E-Cadherin. Stem Cells, 2016, 34, 2443-2446.	1.4	2
13	Full biological characterization of human pluripotent stem cells will open the door to translational research. Archives of Toxicology, 2016, 90, 2173-2186.	1.9	7
14	Mercury toxicokinetics of the healthy human term placenta involve amino acid transporters and ABC transporters. Toxicology, 2016, 340, 34-42.	2.0	44
15	eIF3 controls cell size independently of S6K1-activity. Oncotarget, 2015, 6, 24361-24375.	0.8	13
16	Reliable Quantification of Protein Expression and Cellular Localization in Histological Sections. PLoS ONE, 2014, 9, e100822.	1.1	31
17	mTORC1 Is Essential for Early Steps during Schwann Cell Differentiation of Amniotic Fluid Stem Cells and Regulates Lipogenic Gene Expression. PLoS ONE, 2014, 9, e107004.	1.1	15
18	The Decision on the "Optimal―Human Pluripotent Stem Cell. Stem Cells Translational Medicine, 2014, 3, 553-559.	1.6	23

Margit Rosner

#	Article	IF	CITATIONS
19	Inhibition of mTOR down-regulates scavenger receptor, class B, type I (SR-BI) expression, reduces endothelial cell migration and impairs nitric oxide production. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 944-953.	1.2	19
20	Phosphorylation of nuclear and cytoplasmic pools of ribosomal protein S6 during cell cycle progression. Amino Acids, 2013, 44, 1233-1240.	1.2	7
21	Amniotic fluid stem cells and fetal cell microchimerism. Trends in Molecular Medicine, 2013, 19, 271-272.	3.5	25
22	In vitro cell migration and invasion assays. Mutation Research - Reviews in Mutation Research, 2013, 752, 10-24.	2.4	605
23	Merging high-quality biochemical fractionation with a refined flow cytometry approach to monitor nucleocytoplasmic protein expression throughout the unperturbed mammalian cell cycle. Nature Protocols, 2013, 8, 602-626.	5.5	113
24	Tuberin and PRAS40 are anti-apoptotic gatekeepers during early human amniotic fluid stem-cell differentiation. Human Molecular Genetics, 2012, 21, 1049-1061.	1.4	21
25	Amniotic fluid stem cells to study mTOR signaling in differentiation. Organogenesis, 2012, 8, 96-100.	0.4	2
26	Amniotic Fluid Stem Cells: Future Perspectives. Stem Cells International, 2012, 2012, 1-6.	1.2	16
27	Detection of Cytoplasmic and Nuclear Functions of mTOR by Fractionation. Methods in Molecular Biology, 2012, 821, 105-124.	0.4	29
28	Renal differentiation of amniotic fluid stem cells: perspectives for clinical application and for studies on specific human genetic diseases. European Journal of Clinical Investigation, 2012, 42, 677-684.	1.7	11
29	Amniotic fluid stem cell-based models to study the effects of gene mutations and toxicants on male germ cell formation. Asian Journal of Andrology, 2012, 14, 247-250.	0.8	5
30	Human amniotic fluid stem cells as a model for functional studies of genes involved in human genetic diseases or oncogenesis. Oncotarget, 2011, 2, 705-712.	0.8	27
31	Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nature Protocols, 2010, 5, 1081-1095.	5.5	70
32	Contribution of human amniotic fluid stem cells to renal tissue formation depends on mTOR. Human Molecular Genetics, 2010, 19, 3320-3331.	1.4	70
33	Functional interaction of mammalian target of rapamycin complexes in regulating mammalian cell size and cell cycle. Human Molecular Genetics, 2009, 18, 3298-3310.	1.4	49
34	Induction of mesenchymal/epithelial marker expression in human amniotic fluid stem cells. Reproductive BioMedicine Online, 2009, 19, 838-846.	1.1	39
35	The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutation Research - Reviews in Mutation Research, 2008, 658, 234-246.	2.4	125
36	The mTOR pathway and its role in human genetic diseases. Mutation Research - Reviews in Mutation Research, 2008, 659, 284-292.	2.4	156

MARGIT ROSNER

#	Article	IF	CITATIONS
37	Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Human Molecular Genetics, 2008, 17, 2934-2948.	1.4	219
38	p27 Kip1 localization depends on the tumor suppressor protein tuberin. Human Molecular Genetics, 2007, 16, 1541-1556.	1.4	45
39	The tuberous sclerosis genes and regulation of the cyclin-dependent kinase inhibitor p27. Mutation Research - Reviews in Mutation Research, 2006, 613, 10-16.	2.4	33
40	The tuberous sclerosis genes, TSC1 and TSC2, trigger different gene expression responses. International Journal of Oncology, 2005, 27, 1411-24.	1.4	4
41	Activation of ectopic Oct-4 and Rex-1 promoters in human amniotic fluid cells. International Journal of Molecular Medicine, 2005, 16, 987-92.	1.8	43
42	Tuberin Binds p27 and Negatively Regulates Its Interaction with the SCF Component Skp2. Journal of Biological Chemistry, 2004, 279, 48707-48715.	1.6	52
43	Neurogenic cells in human amniotic fluid. American Journal of Obstetrics and Gynecology, 2004, 191, 309-314.	0.7	134
44	Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research?. Human Reproduction, 2003, 18, 1489-1493.	0.4	321