
Xiqing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3277992/publications.pdf Version: 2024-02-01

XIOING WANG

#	Article	IF	CITATIONS
1	Facile Ionothermal Synthesis of Microporous and Mesoporous Carbons from Task Specific Ionic Liquids. Journal of the American Chemical Society, 2009, 131, 4596-4597.	6.6	404
2	Softâ€Templated Mesoporous Carbonâ€Carbon Nanotube Composites for High Performance Lithiumâ€ion Batteries. Advanced Materials, 2011, 23, 4661-4666.	11.1	352
3	Ammonia-Treated Ordered Mesoporous Carbons as Catalytic Materials for Oxygen Reduction Reaction. Chemistry of Materials, 2010, 22, 2178-2180.	3.2	344
4	Fluidic Carbon Precursors for Formation of Functional Carbon under Ambient Pressure Based on Ionic Liquids. Advanced Materials, 2010, 22, 1004-1007.	11.1	316
5	Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries. Journal of Power Sources, 2010, 195, 4375-4379.	4.0	306
6	Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids. Chemical Communications, 2010, 46, 4487.	2.2	295
7	Highly Active, Nonprecious Metal Perovskite Electrocatalysts for Bifunctional Metal–Air Battery Electrodes. Journal of Physical Chemistry Letters, 2013, 4, 1254-1259.	2.1	294
8	Facile Synthesis of Ordered Mesoporous Carbons with High Thermal Stability by Self-Assembly of Resorcinolâ^Formaldehyde and Block Copolymers under Highly Acidic Conditions. Langmuir, 2008, 24, 7500-7505.	1.6	291
9	Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells. Energy and Environmental Science, 2012, 5, 5701-5707.	15.6	273
10	Sulfonated Ordered Mesoporous Carbon as a Stable and Highly Active Protonic Acid Catalyst. Chemistry of Materials, 2007, 19, 2395-2397.	3.2	249
11	Tuning the Electrocatalytic Activity of Perovskites through Active Site Variation and Support Interactions. Chemistry of Materials, 2014, 26, 3368-3376.	3.2	229
12	Sulfonated ordered mesoporous carbon for catalytic preparation of biodiesel. Carbon, 2008, 46, 1664-1669.	5.4	213
13	Lithium–Sulfur Batteries Based on Nitrogenâ€Doped Carbon and an Ionicâ€Liquid Electrolyte. ChemSusChem, 2012, 5, 2079-2085.	3.6	187
14	lonic Liquids as Versatile Precursors for Functionalized Porous Carbon and Carbon–Oxide Composite Materials by Confined Carbonization. Angewandte Chemie - International Edition, 2010, 49, 6664-6668.	7.2	150
15	Preparation of activated mesoporous carbons for electrosorption of ions from aqueous solutions. Journal of Materials Chemistry, 2010, 20, 4602.	6.7	121
16	Nitrogen-enriched ordered mesoporous carbons through direct pyrolysis in ammonia with enhanced capacitive performance. Journal of Materials Chemistry A, 2013, 1, 7920.	5.2	120
17	Highly Stable and Active Ptâ	3.2	109
18	Boron and nitrogen-rich carbons from ionic liquid precursors with tailorable surface properties. Physical Chemistry Chemical Physics, 2011, 13, 13486.	1.3	98

XIQING WANG

#	Article	IF	CITATIONS
19	"Brickâ€andâ€Mortar―Selfâ€Assembly Approach to Graphitic Mesoporous Carbon Nanocomposites. Advanced Functional Materials, 2011, 21, 2208-2215.	7.8	98
20	High pseudocapacitance of MnO2 nanoparticles in graphitic disordered mesoporous carbon at high scan rates. Journal of Materials Chemistry, 2012, 22, 3160.	6.7	85
21	Noncovalently functionalized graphitic mesoporous carbon as a stable support of Pt nanoparticles for oxygen reduction. Journal of Power Sources, 2010, 195, 1805-1811.	4.0	78
22	Hybrid MnO ₂ –disordered mesoporous carbon nanocomposites: synthesis and characterization as electrochemical pseudocapacitor electrodes. Journal of Materials Chemistry, 2010, 20, 390-398.	6.7	78
23	Fast diffusion in a room temperature ionic liquid confined in mesoporous carbon. Europhysics Letters, 2012, 97, 66004.	0.7	75
24	Facile Preparation of Hierarchically Porous Carbon Monoliths with Well-Ordered Mesostructures. Chemistry of Materials, 2006, 18, 6373-6381.	3.2	68
25	Synthetic Control of Selenide Supertetrahedral Clusters and Threeâ€Dimensional Coâ€assembly by Chargeâ€Complementary Metal Cations. Angewandte Chemie - International Edition, 2009, 48, 7204-7207.	7.2	68
26	Three-Dimensional Frameworks of Gallium Selenide Supertetrahedral Clusters. Angewandte Chemie - International Edition, 2004, 43, 1502-1505.	7.2	65
27	Ammonia-activated mesoporous carbon membranes for gas separations. Journal of Membrane Science, 2011, 368, 41-47.	4.1	63
28	Protein Refolding Assisted by Periodic Mesoporous Organosilicas. Langmuir, 2007, 23, 5735-5739.	1.6	55
29	Controlled synthesis of mesoporous carbon modified by tungsten carbides as an improved electrocatalyst support for the oxygen reduction reaction. Journal of Power Sources, 2009, 193, 495-500.	4.0	54
30	A simple method to ordered mesoporous carbons containing nickel nanoparticles. Adsorption, 2009, 15, 138-144.	1.4	48
31	Preparation of free-standing high quality mesoporous carbon membranes. Carbon, 2010, 48, 557-560.	5.4	46
32	An unusual slowdown of fast diffusion in a room temperature ionic liquid confined in mesoporous carbon. Europhysics Letters, 2013, 102, 16004.	0.7	40
33	Distribution of 1-Butyl-3-methylimidazolium Bistrifluoromethylsulfonimide in Mesoporous Silica As a Function of Pore Filling. Journal of Physical Chemistry C, 2013, 117, 15754-15762.	1.5	37
34	Graphitic mesoporous carbon as a support of promoted Rh catalysts for hydrogenation of carbon monoxide to ethanol. Carbon, 2012, 50, 1574-1582.	5.4	36
35	Surface Modification of Ordered Mesoporous Carbons via 1,3-Dipolar Cycloaddition of Azomethine Ylides. Chemistry of Materials, 2008, 20, 4800-4802.	3.2	32
36	Molecular-Sieving Capabilities of Mesoporous Carbon Membranes. Journal of Physical Chemistry B, 2008, 112, 8563-8570.	1.2	28

XIQING WANG

#	Article	IF	CITATIONS
37	Graphitic mesoporous carbon-supported molybdenum carbides for catalytic hydrogenation of carbon monoxide to mixed alcohols. Microporous and Mesoporous Materials, 2013, 170, 141-149.	2.2	24
38	Characterizing Stability Properties of Supported Bilayer Membranes on Nanoglassified Substrates Using Surface Plasmon Resonance. Langmuir, 2008, 24, 8127-8133.	1.6	23
39	Fluorination of "brick and mortar―soft-templated graphitic ordered mesoporous carbons for high power lithium-ion battery. Journal of Materials Chemistry A, 2013, 1, 9414.	5.2	23
40	"One-pot―synthesis of phosphorylated mesoporous carbon heterogeneous catalysts with tailored surface acidity. Catalysis Today, 2012, 186, 12-19.	2.2	22
41	Electrochemical Control of Ion Transport through a Mesoporous Carbon Membrane. Langmuir, 2014, 30, 3606-3611.	1.6	21
42	Fractional Characteristics of Coal Fly Ash for Beneficial Use. Journal of Materials in Civil Engineering, 2013, 25, 63-69.	1.3	12
43	Three-Dimensional Frameworks of Gallium Selenide Supertetrahedral Clusters ChemInform, 2004, 35, no.	0.1	0
44	Rhodium Nanoparticles Confined in Ordered Mesoporous Carbon: Microscopic Characterization and Catalytic Application for Synthesis Gas Conversion to Ethanol. ACS Symposium Series, 2013, , 231-243.	0.5	0

Catalytic Application for Synthesis Gas Conversion to Ethanol. ACS Symposium Series, 2013, , 231-243. 44