Vincenzo Carginale

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3277732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Heterologous expression and biochemical characterisation of the recombinant β-carbonic anhydrase (MpaCA) from the warm-blooded vertebrate pathogen <i>malassezia pachydermatis</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 62-68.	2.5	8
2	Effect of amino acids and amines on the activity of the recombinant Î ¹ -carbonic anhydrase from the Gram-negative bacterium <i>Burkholderia territorii</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2021, 36, 1000-1006.	2.5	7
3	Carbonic Anhydrases: New Perspectives on Protein Functional Role and Inhibition in Helicobacter pylori. Frontiers in Microbiology, 2021, 12, 629163.	1.5	42
4	Inhibitory Effects of Sulfonamide Derivatives on the β-Carbonic Anhydrase (MpaCA) from Malassezia pachydermatis, a Commensal, Pathogenic Fungus Present in Domestic Animals. International Journal of Molecular Sciences, 2021, 22, 12601.	1.8	3
5	Use of an immobilised thermostable <i>α</i> -CA (SspCA) for enhancing the metabolic efficiency of the freshwater green microalga <i>Chlorella sorokiniana</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2020, 35, 913-920.	2.5	11
6	The Effect of Substituted Benzene-Sulfonamides and Clinically Licensed Drugs on the Catalytic Activity of CynT2, a Carbonic Anhydrase Crucial for Escherichia coli Life Cycle. International Journal of Molecular Sciences, 2020, 21, 4175.	1.8	18
7	<i>Phaeodactylum tricornutum</i> as a model organism for testing the membrane penetrability of sulphonamide carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 510-518.	2.5	17
8	Thermostability enhancement of the α-carbonic anhydrase from <i>Sulfurihydrogenibium yellowstonense</i> by using the anchoring-and-self-labelling- <i>protein-tag</i> system (ASL <i>^{tag}</i>). Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 946-954.	2.5	10
9	An AGT-based <i>protein-tag</i> system for the labelling and surface immobilization of enzymes on <i>E. coli</i> outer membrane. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 490-499.	2.5	14
10	Identification and characterization of the α-CA in the outer membrane vesicles produced by <i>Helicobacter pylori</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 189-195.	2.5	38
11	Physiological and ultrastructural effects of acute ozone fumigation in the lichen Xanthoria parietina: the role of parietin and hydration state. Environmental Science and Pollution Research, 2018, 25, 8104-8112.	2.7	11
12	Comparison of the anion inhibition profiles of the β- and γ-carbonic anhydrases from the pathogenic bacterium Burkholderia pseudomallei. Bioorganic and Medicinal Chemistry, 2017, 25, 2010-2015.	1.4	8
13	Cloning, expression and purification of the α-carbonic anhydrase from the mantle of the Mediterranean mussel, Mytilus galloprovincialis. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1029-1035.	2.5	11
14	Comparison of the Sulfonamide Inhibition Profiles of the β- and γ-Carbonic Anhydrases from the Pathogenic Bacterium Burkholderia pseudomallei. Molecules, 2017, 22, 421.	1.7	29
15	Anion inhibition profiles of α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae. Bioorganic and Medicinal Chemistry, 2016, 24, 3413-3417.	1.4	49
16	Cloning, expression, purification and sulfonamide inhibition profile of the complete domain of the Îcarbonic anhydrase from Plasmodium falciparum. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4184-4190.	1.0	37
17	Anion inhibition profiles of the complete domain of the Î-carbonic anhydrase from Plasmodium falciparum. Bioorganic and Medicinal Chemistry, 2016, 24, 4410-4414.	1.4	34
18	Cloning, characterization and anion inhibition studies of a Î ³ -carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea. Bioorganic and Medicinal Chemistry, 2016, 24, 835-840.	1.4	44

#	Article	IF	CITATIONS
19	A new procedure for the cloning, expression and purification of the β-carbonic anhydrase from the pathogenic yeast <i>Malassezia globosa</i> , an anti-dandruff drug target. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 1156-1161.	2.5	30
20	Sulfonamide inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Bioorganic and Medicinal Chemistry, 2016, 24, 1115-1120.	1.4	57
21	Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic bacterium Colwellia psychrerythraea. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1253-1259.	1.0	13
22	Anion inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1406-1410.	1.0	39
23	Comparison of the sulfonamide inhibition profiles of the α-, β- and γ-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 1941-1946.	1.0	50
24	Recombinant thermoactive phosphoenolpyruvate carboxylase (PEPC) from Thermosynechococcus elongatus and its coupling with mesophilic/thermophilic bacterial carbonic anhydrases (CAs) for the conversion of CO2 to oxaloacetate. Bioorganic and Medicinal Chemistry, 2016, 24, 220-225.	1.4	18
25	Expression and characterization of a recombinant psychrophilic γ-carbonic anhydrase (NcoCA) identified in the genome of the Antarctic cyanobacteria belonging to the genus Nostoc. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 810-817.	2.5	7
26	Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 2002-2006.	1.0	72
27	Cloning, characterization and anion inhibition studies of a γ-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 4970-4975.	1.0	13
28	A failed tentative to design a super carbonic anhydrase having the biochemical properties of the most thermostable CA (SspCA) and the fastest (SazCA) enzymes. Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, 30, 989-994.	2.5	13
29	Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3550-3555.	1.0	28
30	Cloning, characterization and anion inhibition studies of a new Î ³ -carbonic anhydrase from the Antarctic bacterium Pseudoalteromonas haloplanktis. Bioorganic and Medicinal Chemistry, 2015, 23, 4405-4409.	1.4	26
31	Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic cyanobacterium Nostoc commune. Bioorganic and Medicinal Chemistry, 2015, 23, 1728-1734.	1.4	33
32	Biomimetic CO ₂ capture using a highly thermostable bacterial α-carbonic anhydrase immobilized on a polyurethane foam. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 146-150.	2.5	131
33	Biochemical characterization of the \hat{i}^3 -carbonic anhydrase from the oral pathogen Porphyromonas gingivalis, PgiCA. Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 532-537.	2.5	64
34	Biochemical properties of a new α -carbonic anhydrase from the human pathogenic bacterium, <i>Vibrio cholerae</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2014, 29, 23-27.	2.5	90
35	Effect of a recombinant manganese superoxide dismutase on prevention of contrast-induced acute kidney injury. Clinical and Experimental Nephrology, 2013, 18, 424-31.	0.7	46
36	An α-carbonic anhydrase from the thermophilic bacterium Sulphurihydrogenibium azorense is the fastest enzyme known for the CO2 hydration reaction. Bioorganic and Medicinal Chemistry, 2013, 21, 1465-1469.	1.4	121

#	Article	IF	CITATIONS
37	The extremo-α-carbonic anhydrase (CA) from Sulfurihydrogenibium azorense, the fastest CA known, is highly activated by amino acids and amines. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1087-1090.	1.0	55
38	A highly catalytically active γ-carbonic anhydrase from the pathogenic anaerobe Porphyromonas gingivalis and its inhibition profile with anions and small molecules. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4067-4071.	1.0	62
39	The extremo-α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium azorense is highly inhibited by sulfonamides. Bioorganic and Medicinal Chemistry, 2013, 21, 4521-4525.	1.4	68
40	The alpha-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1 is highly susceptible to inhibition by sulfonamides. Bioorganic and Medicinal Chemistry, 2013, 21, 1534-1538.	1.4	54
41	Nothepsin. , 2013, , 63-69.		Ο
42	Anion inhibition studies of the α-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 1636-1638.	1.0	54
43	X-ray structure of the first`extremo-α-carbonic anhydrase', a dimeric enzyme from the thermophilic bacterium <i>Sulfurihydrogenibium yellowstonense</i> YO3AOP1. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 1150-1159.	2.5	100
44	DNA Cloning, Characterization, and Inhibition Studies of an α-Carbonic Anhydrase from the Pathogenic Bacterium Vibrio cholerae. Journal of Medicinal Chemistry, 2012, 55, 10742-10748.	2.9	103
45	Anion inhibition studies of the fastest carbonic anhydrase (CA) known, the extremo-CA from the bacterium Sulfurihydrogenibium azorense. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7142-7145.	1.0	69
46	The first activation study of a bacterial carbonic anhydrase (CA). The thermostable α-CA from Sulfurihydrogenibium yellowstonense YO3AOP1 is highly activated by amino acids and amines. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 6324-6327.	1.0	73
47	Biochemical properties of a novel and highly thermostable bacterial α-carbonic anhydrase from <i>Sulfurihydrogenibium yellowstonense YO3AOP1</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2012, 27, 892-897.	2.5	111
48	Anion inhibition studies of an α-carbonic anhydrase from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5630-5634.	1.0	77
49	Toxicity, Accumulation, and Removal of Heavy Metals by Three Aquatic Macrophytes. International Journal of Phytoremediation, 2012, 14, 374-387.	1.7	94
50	A Molecular Carrier to Transport and Deliver Cisplatin into Endometrial Cancer Cells. Chemical Biology and Drug Design, 2012, 80, 9-16.	1.5	5
51	Associations of selenium status with cardiometabolic risk factors: An 8-year follow-up analysis of the Olivetti Heart Study. Atherosclerosis, 2011, 217, 274-278.	0.4	81
52	Gene expression profiling of phytoplasma-infected Madagascar periwinkle leaves using differential display. Molecular Biology Reports, 2011, 38, 2993-3000.	1.0	23
53	Aspartic proteinases in Antarctic fish. Marine Genomics, 2009, 2, 1-10.	0.4	16
54	Purification and characterization of pepsins A1 and A2 from the Antarctic rock cod <i>Trematomus bernacchii</i> . FEBS Journal, 2007, 274, 6152-6166.	2.2	42

VINCENZO CARGINALE

#	Article	IF	CITATIONS
55	Differential display analysis of gene expression in Etrog citron leaves infected by Citrus viroid III. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2007, 1769, 228-235.	2.4	36
56	Metal detoxification and homeostasis in Antarctic Notothenioids. A comparative survey on evolution, expression and functional properties of fish and mammal metallothioneins. Reviews in Environmental Science and Biotechnology, 2006, 5, 253-267.	3.9	4
57	Metal detoxification and homeostasis in Antarctic Notothenioids. A comparative survey on evolution, expression and functional properties of fish and mammal metallothioneins. , 2006, , 369-383.		0
58	Structural and functional studies of vertebrate metallothioneins: cross-talk between domains in the absence of physical contact. Biochemical Journal, 2005, 391, 95-103.	1.7	14
59	Effect of cadmium on gene expression in the liverwort Lunularia cruciata. Gene, 2005, 356, 153-159.	1.0	18
60	Accumulation, localisation, and toxic effects of cadmium in the liverwort Lunularia cruciata. Protoplasma, 2004, 223, 53-61.	1.0	63
61	Adaptive evolution and functional divergence of pepsin gene family. Gene, 2004, 333, 81-90.	1.0	38
62	Identification of genes expressed in response to phytoplasma infection in leaves of Prunus armeniaca by messenger RNA differential display. Gene, 2004, 332, 29-34.	1.0	51
63	Gene amplification and cold adaptation of pepsin in Antarctic fish. A possible strategy for food digestion at low temperature. Gene, 2004, 336, 195-205.	1.0	33
64	Phylogenetic Divergence of Fish and Mammalian Metallothionein: Relationships with Structural Diversification and Organismal Temperature. Journal of Molecular Evolution, 2003, 57, S250-S257.	0.8	24
65	Solution Structure of MT_nc, a Novel Metallothionein from the Antarctic Fish Notothenia coriiceps. Structure, 2003, 11, 435-443.	1.6	52
66	ldentification of cadmium-sensitive genes in the Antarctic fish Chionodraco hamatus by messenger RNA differential display. Gene, 2002, 299, 117-124.	1.0	35
67	Stability and conformational dynamics of metallothioneins from the antarctic fishNotothenia coriiceps and mouse. Proteins: Structure, Function and Bioinformatics, 2002, 46, 259-267.	1.5	27
68	Structural and functional analysis of metal regulatory elements in the promoter region of genes encoding metallothionein isoforms in the Antarctic fish Chionodraco hamatus (icefish). Gene, 2001, 274, 199-208.	1.0	38
69	Structural characterization and thermal stability of Notothenia coriiceps metallothionein. Biochemical Journal, 2001, 354, 291.	1.7	19
70	Structural characterization and thermal stability of Notothenia coriiceps metallothionein. Biochemical Journal, 2001, 354, 291-299.	1.7	24
71	Tissue-specific regulation of metallothionein and metallothionein mRNA accumulation in the Antarctic notothenioid, Notothenia coriiceps. Polar Biology, 2000, 23, 17-23.	0.5	17
72	Metallothionein in Antarctic notothenioids: Genetic polymorphism and differential gene expression. Italian Journal of Zoology, 2000, 67, 13-20.	0.6	1

VINCENZO CARGINALE

#	Article	IF	CITATIONS
73	Aspartic proteinases from Antarctic fish. A biochemical and molecular approach. Italian Journal of Zoology, 2000, 67, 21-26.	0.6	0
74	Cathepsin D from the liver of the Antarctic icefish Chionodraco hamatus exhibits unusual activity and stability at high temperatures. BBA - Proteins and Proteomics, 1999, 1431, 64-73.	2.1	33
75	Metallothioneins in antarctic fish: evidence for independent duplication and gene conversion. Molecular Biology and Evolution, 1999, 16, 885-897.	3.5	45
76	Accumulation of untranslated metallothionein mRNA in antarctic hemoglobinless fish (icefish). , 1999, , 167-172.		3
77	Molecular cloning and sequence determination of a novel aspartic proteinase from Antarctic fish. BBA - Proteins and Proteomics, 1998, 1387, 457-461.	2.1	24
78	Cadmium-induced differential accumulation of metallothionein isoforms in the Antarctic icefish, which exhibits no basal metallothionein protein but high endogenous mRNA levels. Biochemical Journal, 1998, 332, 475-481.	1.7	64
79	Metallothionein in Antarctic Fish. , 1998, , 151-161.		2
80	Difference in hepatic metallothionein content in Antarctic red-blooded and haemoglobinless fish: undetectable metallothionein levels in haemoglobinless fish is accompanied by accumulation of untranslated metallothionein mRNA. Biochemical Journal, 1997, 322, 207-211.	1.7	48
81	PCR amplification and cloning of metallothionein complementary DNAs in temperate and Antarctic sea urchin characterized by a large difference in egg metallothionein content. Cellular and Molecular Life Sciences, 1997, 53, 472-477.	2.4	16
82	Changes in dopamine uptake and developmental effects of dopamine receptor inactivation in the sea urchin. Molecular Reproduction and Development, 1995, 40, 379-385.	1.0	9
83	Phospholipase A2 and protein kinase C enzymatic activities and their interactions in Hydra vulgaris. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 1995, 111, 211-219.	0.7	5
84	Receptor-mediated inhibition of octopamine-stimulated adenylate cyclase in the optic lobe of Octopus vulgaris. Comparative Biochemistry and Physiology C, Comparative Pharmacology and Toxicology, 1993, 106, 555-559.	0.5	0
85	Interaction of metergoline with D-2 dopamine receptors*1. Pharmacological Research, 1992, 26, 188.	3.1	Ο
86	Adenylate cyclase from sea urchin eggs is positively and negatively regulated by D-1 and D-2 dopamine receptors. Experimental Cell Research, 1992, 203, 491-494.	1.2	12
87	Developmental changes of metallothionein content and synthesis in sea urchin embryos. Cell Biology International Reports, 1991, 15, 305-317.	0.7	12
88	A dopamine- and octopamine-sensitive adenylate cyclase in the nervous system of Octopus vulgaris. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1991, 100, 805-808.	0.2	4
89	Guanine nucleotide binding proteins activate adenylate cyclase from sea urchin sperm. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1990, 97, 339-342.	0.2	2
90	Interaction of 5HT antagonists with D-2 receptors. Pharmacological Research, 1990, 22, 83.	3.1	0

#	Article	IF	CITATIONS
91	The sea urchin egg as a model for molecular pharmacology studies on dopaminergic stimulation of the adenylate cyclase. Pharmacological Research Communications, 1988, 20, 290.	0.2	1