Maxim V Shugaev

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3277183/maxim-v-shugaev-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

24 802 14 26 g-index

26 g-index

26 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
24	Thermoelastic modeling of laser-induced generation of strong surface acoustic waves. <i>Journal of Applied Physics</i> , 2021 , 130, 185108	2.5	1
23	Mechanisms of Acoustic Desorption of Atomic Clusters and Exfoliation of Graphene Multilayers. Journal of Physical Chemistry C, 2021 , 125, 23313-23326	3.8	1
22	Laser-Induced Thermal Processes: Heat Transfer, Generation of Stresses, Melting and Solidification, Vaporization, and Phase Explosion 2021 , 83-163		5
21	Atomistic simulation of the generation of vacancies in rapid crystallization of metals. <i>Acta Materialia</i> , 2021 , 203, 116465	8.4	2
20	The effect of pulse duration on nanoparticle generation in pulsed laser ablation in liquids: insights from large-scale atomistic simulations. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 7077-7099	3.6	46
19	Effect of a liquid environment on single-pulse generation of laser induced periodic surface structures and nanoparticles. <i>Nanoscale</i> , 2020 , 12, 7674-7687	7.7	24
18	Laser-Induced Thermal Processes: Heat Transfer, Generation of Stresses, Melting and Solidification, Vaporization, and Phase Explosion 2020 , 1-81		5
17	Molecular dynamics modeling of nonlinear propagation of surface acoustic waves. <i>Journal of Applied Physics</i> , 2020 , 128, 045117	2.5	7
16	Simulation of Chemical Order D isorder Transitions Induced Thermally at the Nanoscale for Magnetic Recording and Data Storage. <i>ACS Applied Nano Materials</i> , 2020 , 3, 7668-7677	5.6	2
15	Thermodynamic analysis and atomistic modeling of subsurface cavitation in photomechanical spallation. <i>Computational Materials Science</i> , 2019 , 166, 311-317	3.2	10
14	Computational Study of Short-Pulse Laser-Induced Generation of Crystal Defects in Ni-Based Single-Phase Binary SolidBolution Alloys. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 2202-2215	3.8	15
13	Laser-Rewriteable Ferromagnetism at Thin-Film Surfaces. <i>ACS Applied Materials & Description</i> (1997) Laser-Rewriteable Ferromagnetism at Thin-Film Surfaces. <i>ACS Applied Materials & Description</i> (1997) Laser-Rewriteable Ferromagnetism at Thin-Film Surfaces. <i>ACS Applied Materials & Description</i> (1997) Laser-Rewriteable Ferromagnetism at Thin-Film Surfaces. <i>ACS Applied Materials & Description</i> (1997) Laser-Rewriteable Ferromagnetism at Thin-Film Surfaces. <i>ACS Applied Materials & Description</i> (1997) Laser-Rewriteable Ferromagnetism at Thin-Film Surfaces. <i>ACS Applied Materials & Description</i> (1997) Laser-Rewriteable Ferromagnetism at Thin-Film Surfaces. <i>ACS Applied Materials & Description</i> (1997) Laser-Rewriteable Ferromagnetism at Thin-Film Surfaces. <i>ACS Applied Materials & Description</i> (1997) Laser-Rewriteable Ferromagnetism (1997	9.5	22
12	Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. <i>Nanoscale</i> , 2018 , 10, 6900-6910	7.7	130
11	Insights into Laser-Materials Interaction Through Modeling on Atomic and Macroscopic Scales. <i>Springer Series in Materials Science</i> , 2018 , 107-148	0.9	8
10	Generation of Subsurface Voids, Incubation Effect, and Formation of Nanoparticles in Short Pulse Laser Interactions with Bulk Metal Targets in Liquid: Molecular Dynamics Study. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 16549-16567	3.8	64
9	Generation of nanocrystalline surface layer in short pulse laser processing of metal targets under conditions of spatial confinement by solid or liquid overlayer. <i>Applied Surface Science</i> , 2017 , 417, 54-63	6.7	26
8	Mechanism of single-pulse ablative generation of laser-induced periodic surface structures. <i>Physical Review B</i> , 2017 , 96,	3.3	52

LIST OF PUBLICATIONS

7	Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water. <i>Journal of Colloid and Interface Science</i> , 2017 , 489, 3-17	9.3	96
6	Growth Twinning and Generation of High-Frequency Surface Nanostructures in Ultrafast Laser-Induced Transient Melting and Resolidification. <i>ACS Nano</i> , 2016 , 10, 6995-7007	16.7	71
5	Fundamentals of ultrafast laser that erial interaction. MRS Bulletin, 2016, 41, 960-968	3.2	117
4	Experimental characterization and atomistic modeling of interfacial void formation and detachment in short pulse laser processing of metal surfaces covered by solid transparent overlayers. <i>Applied Physics A: Materials Science and Processing</i> , 2016 , 122, 1	2.6	12
3	Strong enhancement of surface diffusion by nonlinear surface acoustic waves. <i>Physical Review B</i> , 2015 , 91,	3.3	14
2	Role of thermal stresses on pulsed laser irradiation of thin films under conditions of microbump formation and nonvaporization forward transfer. <i>Applied Physics A: Materials Science and Processing</i> , 2013 , 113, 521-529	2.6	29
1	Thermodynamic and stress analysis of laser-induced forward transfer of metals. <i>Applied Physics A:</i> Materials Science and Processing, 2010 , 101, 103-109	2.6	43