Yusran Sulaiman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3277133/publications.pdf

Version: 2024-02-01

126708 182168 3,348 107 33 51 citations h-index g-index papers 108 108 108 3837 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Materials and Design, 2020, 186, 108199.	3.3	424
2	Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode. Sensors, 2014, 14, 15227-15243.	2.1	143
3	Graphene-based ternary composites for supercapacitors. International Journal of Energy Research, 2018, 42, 2104-2116.	2.2	102
4	Effect of electropolymerization potential on the preparation of PEDOT/graphene oxide hybrid material for supercapacitor application. Electrochimica Acta, 2016, 188, 785-792.	2.6	90
5	PNA biosensor based on reduced graphene oxide/water soluble quantum dots for the detection of Mycobacterium tuberculosis. Sensors and Actuators B: Chemical, 2017, 241, 1024-1034.	4.0	88
6	Fabrication of PEDOT coated PVA-GO nanofiber for supercapacitor. Materials Chemistry and Physics, 2017, 192, 161-169.	2.0	81
7	Review—Electrochemical Detection of Uric Acid, Dopamine and Ascorbic Acid. Journal of the Electrochemical Society, 2018, 165, B258-B267.	1.3	72
8	Unveiling high specific energy supercapacitor from layer-by-layer assembled polypyrrole/graphene oxide polypyrrole/manganese oxide electrode material. Scientific Reports, 2019, 9, 4884.	1.6	72
9	Biosensor Based on Tyrosinase Immobilized on Graphene-Decorated Gold Nanoparticle/Chitosan for Phenolic Detection in Aqueous. Sensors, 2017, 17, 1132.	2.1	64
10			

#	Article	IF	CITATIONS
19	Electrochemical sensor based on gold nanoparticles/ethylenediamine-reduced graphene oxide for trace determination of fenitrothion in water. RSC Advances, 2016, 6, 89430-89439.	1.7	45
20	Recent advances in development of electroactive composite materials for electrochromic and supercapacitor applications. Journal of Power Sources, 2022, 523, 231029.	4.0	45
21	Electropolymerization of poly(3,4-ethylenedioxythiophene) onto polyvinyl alcohol-graphene quantum dot-cobalt oxide nanofiber composite for high-performance supercapacitor. Electrochimica Acta, 2018, 261, 548-556.	2.6	44
22	Electrochemical properties of PVA–GO/PEDOT nanofibers prepared using electrospinning and electropolymerization techniques. RSC Advances, 2016, 6, 17720-17727.	1.7	43
23	Fabrication of poly(vinyl alcohol)â€graphene quantum dots coated with poly(3,4â€ethylenedioxythiophene) for supercapacitor. Journal of Polymer Science Part A, 2018, 56, 50-58.	2.5	42
24	Supercapacitor with superior electrochemical properties derived from symmetrical manganese oxide-carbon fiber coated with polypyrrole. International Journal of Hydrogen Energy, 2018, 43, 17328-17337.	3.8	42
25	Incorporation of Zinc Oxide into Carbon nanotube/Graphite nanofiber as high performance supercapacitor electrode. Electrochimica Acta, 2017, 228, 259-267.	2.6	39
26	A simple strategy to prepare a layer-by-layer assembled composite of Ni–Co LDHs on polypyrrole/rGO for a high specific capacitance supercapacitor. RSC Advances, 2019, 9, 40478-40486.	1.7	38
27	Enhancement of electrochemical performance based on symmetrical poly-(3,4-ethylenedioxythiophene) coated polyvinyl alcohol/graphene oxide/manganese oxide microfiber for supercapacitor. Electrochimica Acta, 2018, 259, 466-473.	2.6	36
28	Ternary functionalised carbon nanofibers/polypyrrole/manganese oxide as high specific energy electrode for supercapacitor. Ceramics International, 2019, 45, 8433-8439.	2.3	36
29	Voltammetric determination of hydroquinone, catechol, and resorcinol by using a glassy carbon electrode modified with electrochemically reduced graphene oxide-poly(Eriochrome black T) and gold nanoparticles. Mikrochimica Acta, 2019, 186, 261.	2.5	35
30	Reduced Graphene Oxide/TEMPO-Nanocellulose Nanohybrid-Based Electrochemical Biosensor for the Determination of <i>Mycobacterium tuberculosis </i> . Journal of Sensors, 2020, 2020, 1-11.	0.6	35
31	Production of Conductive PEDOT-Coated PVA-GO Composite Nanofibers. Nanoscale Research Letters, 2017, 12, 113.	3.1	34
32	Electrochemical reduced graphene oxide-poly(eriochrome black T)/gold nanoparticles modified glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Arabian Journal of Chemistry, 2018, 11, 1301-1312.	2.3	34
33	Recent Advances in Layer-by-Layer Assembled Conducting Polymer Based Composites for Supercapacitors. Energies, 2019, 12, 2107.	1.6	34
34	Facile synthesis of PEDOT-rGO/HKUST-1 for high performance symmetrical supercapacitor device. Scientific Reports, 2021, 11, 11747.	1.6	34
35	Physicochemical and electrochemical properties of carbon nanotube/graphite nanofiber hybrid nanocomposites for supercapacitor. Journal of Power Sources, 2016, 328, 195-202.	4.0	33
36	Modeling and optimization of electrode modified with poly(3,4-ethylenedioxythiophene)/graphene oxide composite by response surface methodology/Box-Behnken design approach. Journal of Electroanalytical Chemistry, 2017, 787, 1-10.	1.9	33

#	Article	IF	Citations
37	Light scattering effect of polyvinyl-alcohol/titanium dioxide nanofibers in the dye-sensitized solar cell. Scientific Reports, 2019, 9, 14952.	1.6	33
38	Potentiostatic deposition of poly(3, 4-ethylenedioxythiophene) and manganese oxide on porous functionalised carbon fibers as an advanced electrode for asymmetric supercapacitor. Journal of Power Sources, 2019, 444, 227324.	4.0	31
39	Influence of Monomer Concentration on the Morphologies and Electrochemical Properties of PEDOT, PANI, and PPy Prepared from Aqueous Solution. International Journal of Polymer Science, 2016, 2016, 1-12.	1.2	30
40	Development of a PrGO-Modified Electrode for Uric Acid Determination in the Presence of Ascorbic Acid by an Electrochemical Technique. Sensors, 2017, 17, 1539.	2.1	30
41	A bifunctional asymmetric electrochromic supercapacitor with multicolor property based on nickel oxide/vanadium oxide/reduced graphene oxide. Journal of Energy Storage, 2022, 48, 103954.	3.9	30
42	Development of Highly Sensitive Immunosensor for Clenbuterol Detection by Using Poly(3,4-ethylenedioxythiophene)/Graphene Oxide Modified Screen-Printed Carbon Electrode. Sensors, 2018, 18, 4324.	2.1	29
43	Asymmetric supercapacitor of functionalised electrospun carbon fibers/poly(3,4-ethylenedioxythiophene)/manganese oxide//activated carbon with superior electrochemical performance. Scientific Reports, 2019, 9, 16782.	1.6	27
44	A promising negative electrode of asymmetric supercapacitor fabricated by incorporating copper-based metal-organic framework and reduced graphene oxide. International Journal of Hydrogen Energy, 2021, 46, 35385-35396.	3.8	27
45	A fast switching electrochromic performance based on poly(3,4-ethylenedioxythiophene)-reduced graphene oxide/metal-organic framework HKUST-1. Solar Energy Materials and Solar Cells, 2020, 214, 110596.	3.0	26
46	Poly(3,4-ethylenedioxythiophene) Doped with Carbon Materials for High-Performance Supercapacitor: A Comparison Study. Journal of Nanomaterials, 2017, 2017, 1-13.	1.5	25
47	Optimization of peak current of poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotube using response surface methodology/central composite design. RSC Advances, 2017, 7, 11101-11110.	1.7	24
48	Synergistic Enhancement of Ternary Poly(3,4-ethylenedioxythiophene)/Graphene Oxide/Manganese Oxide Composite as a Symmetrical Electrode for Supercapacitors. Energies, 2018, 11, 1510.	1.6	24
49	Supercapacitive Performance of N-Doped Graphene/Mn3O4/Fe3O4 as an Electrode Material. Applied Sciences (Switzerland), 2019, 9, 1040.	1.3	24
50	Fully flexible dye-sensitized solar cells photoanode modified with titanium dioxide-graphene quantum dot light scattering layer. Solar Energy, 2020, 212, 332-338.	2.9	24
51	Advances in Layered Double Hydroxide/Carbon Nanocomposites Containing Ni2+ and Co2+/3+ for Supercapacitors. Frontiers in Materials, 2020, 7, .	1.2	24
52	Optical ammonia gas sensor of poly(3,4-polyethylenedioxythiophene), polyaniline and polypyrrole: A comparative study. Synthetic Metals, 2020, 260, 116294.	2.1	24
53	Simultaneous electrochemical detection of hydroquinone and catechol using poly(3,4-ethylenedioxythiophene)/reduced graphene oxide/manganese dioxide. Synthetic Metals, 2019, 252, 76-81.	2.1	22
54	Poly(3,4-ethylenedioxythiophene) doped with various carbon-based materials as counter electrodes for dye sensitized solar cells. Materials and Design, 2017, 136, 249-257.	3.3	21

#	Article	IF	Citations
55	A copper-based metal-organic framework/tungsten trioxide with improved coloration efficiency for electrochromic application. Chemical Engineering Journal, 2022, 428, 130989.	6.6	21
56	A Novel Poly(3,4-ethylenedioxythiophene)-graphene Oxide/Titanium Dioxide Composites Counter Electrode for Dye-Sensitized Solar Cell. Journal of Nanomaterials, 2017, 2017, 1-9.	1.5	20
57	Optimization of power conversion efficiency of polyvinyl-alcohol/titanium dioxide compact layer using response surface methodology/central composite design. Solar Energy, 2019, 183, 689-696.	2.9	20
58	Polyaniline and manganese oxide decorated on carbon nanofibers as a superior electrode material for supercapacitor. Journal of Electroanalytical Chemistry, 2020, 867, 114188.	1.9	20
59	Chiral acid selectivity displayed by PEDOT electropolymerised in the presence of chiral molecules. Analyst, The, 2012, 137, 2386.	1.7	19
60	One step electrodeposition of poly-(3,4-ethylenedioxythiophene)/graphene oxide/cobalt oxide ternary nanocomposite for high performance supercapacitor. Electrochimica Acta, 2017, 253, 581-588.	2.6	19
61	Bifunctional ternary manganese oxide/vanadium oxide/reduced graphene oxide as electrochromic asymmetric supercapacitor. Ceramics International, 2021, 47, 34529-34537.	2.3	19
62	Physical and electrochemical properties of ZnO films fabricated from highly cathodic electrodeposition potentials. Superlattices and Microstructures, 2017, 103, 171-179.	1.4	18
63	Effect of Monomer Modifications on the Physical Properties of Electropolymerised PEDOT Films. Journal of the Electrochemical Society, 2011, 159, F1-F9.	1.3	17
64	Enhancing a clenbuterol immunosensor based on poly(3,4-ethylenedioxythiophene)/multi-walled carbon nanotube performance using response surface methodology. RSC Advances, 2018, 8, 15522-15532.	1.7	17
65	Facile Electrodeposition of Poly(3,4-ethylenedioxythiophene) on Poly(vinyl alcohol) Nanofibers as the Positive Electrode for High-Performance Asymmetric Supercapacitor. Energies, 2019, 12, 3382.	1.6	17
66	as counter electrode in dye-sensitized solar cell. Results in Physics, 2019, 13, 102355.	2.0	17
67	Optimization of titanium dioxide decorated by graphene quantum dot as a light scatterer for enhanced dye-sensitized solar cell performance. Journal of Electroanalytical Chemistry, 2020, 876, 114516.	1.9	17
68	Ultrahigh specific energy of layer by layer polypyrrole/graphene oxide/multi-walled carbon nanotube polypyrrole/manganese oxide composite for supercapacitor. Journal of Energy Storage, 2020, 28, 101219.	3.9	17
69	High-performance symmetrical supercapacitor based on poly(3,4)-ethylenedioxythiophene/graphene oxide/iron oxide ternary composite. Journal of Materials Science: Materials in Electronics, 2018, 29, 6916-6923.	1.1	16
70	Optimization of power conversion efficiency of polyvinyl-alcohol/titanium dioxide as light scattering layer in DSSC using response surface methodology/central composite design. Results in Physics, 2019, 15, 102559.	2.0	16
71	Improved electrochemical performance of electrochemically designed layered poly(3,4-ethylenedioxythiophene)/graphene oxide with poly(3,4-ethylenedioxythiophene)/nanocrystalline cellulose nanocomposite. Synthetic Metals, 2018, 245, 24-31.	2.1	15
72	Ultrasensitive Reduced Graphene Oxide-Poly(Procion)/Gold Nanoparticles Modified Glassy Carbon Electrode for Selective and Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Journal of the Electrochemical Society, 2019, 166, B664-B672.	1.3	15

#	Article	IF	CITATIONS
73	Preparation of TiO2 compact layer by heat treatment of electrospun TiO2 composite for dye-sensitized solar cells. Thin Solid Films, 2020, 693, 137699.	0.8	15
74	Enhancement of Capacitive Performance in Titania Nanotubes Modified by an Electrochemical Reduction Method. Journal of Nanomaterials, 2018, 2018, 1-9.	1.5	14
75	Review on the utilisation of sensing materials for intrinsic optical NH3 gas sensors. Synthetic Metals, 2021, 280, 116860.	2.1	14
76	Detection of Quinoline in G. boninense-Infected Plants Using Functionalized Multi-Walled Carbon Nanotubes: A Field Study. Sensors, 2017, 17, 1538.	2.1	13
77	Novel poly(3,4-ethylenedioxythiophene)/reduced graphene oxide incorporated with manganese oxide/iron oxide for supercapacitor device. Journal of Materials Science: Materials in Electronics, 2019, 30, 1458-1467.	1.1	13
78	Incorporation of iron oxide into CNT/GNF as a high-performance supercapacitor electrode. Materials Chemistry and Physics, 2018, 212, 318-324.	2.0	12
79	Cauliflowerâ€ike poly(3,4â€ethylenedioxythipohene)/nanocrystalline cellulose/manganese oxide ternary nanocomposite for supercapacitor. Journal of Applied Polymer Science, 2020, 137, 49162.	1.3	12
80	Capacitive performance of vertically aligned reduced titania nanotubes coated with Mn ₂ O ₃ by reverse pulse electrodeposition. RSC Advances, 2018, 8, 23040-23047.	1.7	11
81	Gasochromic response of optical sensing platform integrated with polyaniline and poly(3,4-ethylenedioxythiophene) exposed to NH3 gas. Polymer, 2020, 192, 122313.	1.8	11
82	A Novel Amperometric Aptamer–Antibody Sandwich Assay for the Detection of Tuberculosis With Diazonium Electrografted Enhanced Modified Electrode. IEEE Sensors Journal, 2021, 21, 22442-22449.	2.4	11
83	Effect of Addition of Ni metal catalyst onto the Co and Fe supported catalysts for the formation of carbon nanotubes. Journal of Porous Materials, 2006, 13, 331-334.	1.3	10
84	Influence of Concentration and Electrodeposition Time on the Electrochemical Supercapacitor Performance of Poly(3,4-Ethylenedioxythiophene)/Graphene Oxide Hybrid Material. Journal of Nanomaterials, 2016, 2016, 1-10.	1.5	10
85	Ultrasensitive voltammetric detection of benzenediol isomers using reduced graphene oxide-azo dye decorated with gold nanoparticles. Ecotoxicology and Environmental Safety, 2020, 203, 111026.	2.9	10
86	Enhanced electrochemical sensing of secondary metabolites in oil palms for early detection of Ganoderma boninense based on novel nanoparticle-chitosan functionalized multi-walled carbon nanotube platform. Sensing and Bio-Sensing Research, 2019, 23, 100274.	2.2	8
87	Rational design of layer-by-layer assembled polypyrrole-based nanocomposite film for high-performance supercapacitor. Journal of Materials Science: Materials in Electronics, 2020, 31, 4882-4894.	1.1	8
88	Supercapattery performance of carbon nanofibers decorated with poly(3,4-ethlenedioxythiophene) and cobalt oxide. Ceramics International, 2022, 48, 11772-11778.	2.3	8
89	Electrochemical Determination of 3-Nitrophenol with a Reduced Graphene Oxide Modified Screen Printed Carbon Electrode. Sensor Letters, 2017, 15, 187-195.	0.4	7
90	Power conversion efficiency (PCE) performance of back-illuminated DSSCs with different Pt catalyst contents at the optimized TiO2 thickness. Optik, 2020, 203, 163567.	1.4	7

#	Article	IF	CITATIONS
91	Three-dimensional network of poly(3,4-ethylenedioxythiophene)/nanocrystalline cellulose/cobalt oxide for supercapacitor. Polymer, 2022, 250, 124888.	1.8	7
92	Non-invasive monitoring of temperature stress in Arabidopsis thaliana roots, using ion amperometry. Analytical Methods, 2012, 4, 1656.	1.3	6
93	Quantitative measurement of amoxicillin in Ibuprofen tablets using UPLC. Measurement: Journal of the International Measurement Confederation, 2016, 93, 465-472.	2.5	6
94	Effect of Electropolymerization Potential on the Properties of PEDOT/ZnO Thin Film Composites. Journal of the Electrochemical Society, 2016, 163, G7-G14.	1.3	6
95	Development of Polyclonal Antibody against Clenbuterol for Immunoassay Application. Molecules, 2018, 23, 789.	1.7	6
96	Clenbuterol Immunosensors Based Poly(3,4-Ethylenedioxythiophene)/ Multiwall Carbon Nanotube (PEDOT/MWCNT) Hybrid Composite. Procedia Chemistry, 2016, 20, 29-32.	0.7	4
97	Reduced graphene oxide-titanium dioxide compact layer prepared via electrodeposition for enhanced performance of dye-sensitized solar cells. Optical Materials, 2021, 120, 111475.	1.7	4
98	Impact of polyvinylpyrrolidone and quantity of silver nitrate on silver nanoparticles sizing via solvothermal method for dyeâ€sensitized solar cells. Surface and Interface Analysis, 2022, 54, 109-116.	0.8	4
99	Bio-nanogate manipulation on electrode surface as an electrochemical immunosensing strategy for detecting anti-hepatitis B surface antigen. Bioelectrochemistry, 2022, 143, 107952.	2.4	3
100	Influence of HKUST-1 and emeraldine based on the long-term stability of emeraldine salt-coated SP-POF for room temperature optical NH3 gas sensing. Sensors and Actuators A: Physical, 2022, 335, 113395.	2.0	3
101	Physical and structural properties of polyaniline/microcrystalline cellulose nanocomposite. AIP Conference Proceedings, 2017, , .	0.3	2
102	Laccase Electrochemical Biosensor Based on Graphene-Gold/Chitosan Nanocomposite Film for Bisphenol A Detection. Current Analytical Chemistry, 2020, 16, 570-579.	0.6	2
103	Facile fabrication of PVA nanofiber coated with PEDOT as a counter electrode for dye-sensitized solar cell. Journal of Materials Science: Materials in Electronics, 2019, 30, 8705-8711.	1.1	1
104	Preparation and Characterization of Oil Palm Leaf Fiber/Polypropylene/Epolene® E-43 Composite. BioResources, 2014, 10, .	0.5	1
105	Effect of MgB2-MWCNT Modified Glassy Carbon Electrode on Voltammetric Measurements of Dopamine. Asian Journal of Chemistry, 2015, 27, 3993-3997.	0.1	0
106	Effect of Duty Cycle on Pulse Electrodeposited Tin Seleno Telluride Semiconductor Thin Film. Advanced Materials Research, 0, 1107, 643-648.	0.3	0
107	Hierarchical Porous Materials for Supercapacitors. , 2022, , 622-637.		0

7