Yusran Yusran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3276753/publications.pdf

Version: 2024-02-01

1181555 777949 1,667 16 13 14 citations h-index g-index papers 16 16 16 2318 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	2D Microporous Covalent Organic Frameworks as Cobalt Nanoparticle Supports for Electrocatalytic Hydrogen Evolution Reaction. Crystals, 2022, 12, 880.	1.0	2
2	Postsynthetic functionalization of covalent organic frameworks. National Science Review, 2020, 7, 170-190.	4.6	142
3	Electroactive Covalent Organic Frameworks: Design, Synthesis, and Applications. Advanced Materials, 2020, 32, e2002038.	11.1	148
4	Exfoliated Mesoporous 2D Covalent Organic Frameworks for Highâ€Rate Electrochemical Double‣ayer Capacitors. Advanced Materials, 2020, 32, e1907289.	11.1	136
5	Covalent Organic Frameworks for Catalysis. EnergyChem, 2020, 2, 100035.	10.1	129
6	One-pot cascade syntheses of microporous and mesoporous pyrazine-linked covalent organic frameworks as Lewis-acid catalysts. Dalton Transactions, 2019, 48, 7352-7357.	1.6	26
7	Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie, 2018, 130, 6150-6156.	1.6	67
8	Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie - International Edition, 2018, 57, 6042-6048.	7.2	255
9	Fast, Ambient Temperature and Pressure Ionothermal Synthesis of Three-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 4494-4498.	6.6	283
10	Frontispiz: Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie, 2018, 130, .	1.6	0
11	Frontispiece: Postsynthetic Functionalization of Threeâ€Dimensional Covalent Organic Frameworks for Selective Extraction of Lanthanide Ions. Angewandte Chemie - International Edition, 2018, 57, .	7.2	0
12	Postsynthetic Covalent Modification in Covalent Organic Frameworks. Israel Journal of Chemistry, 2018, 58, 971-984.	1.0	55
13	MOF-derived Co@N-C nanocatalyst for catalytic reduction of 4-nitrophenol to 4-aminophenol. Microporous and Mesoporous Materials, 2017, 241, 346-354.	2.2	65
14	Simple coordination complex-derived Ni NP anchored N-doped porous carbons with high performance for reduction of nitroarenes. CrystEngComm, 2017, 19, 6612-6619.	1.3	17
15	Three-Dimensional Ionic Covalent Organic Frameworks for Rapid, Reversible, and Selective Ion Exchange. Journal of the American Chemical Society, 2017, 139, 17771-17774.	6.6	211
16	Magnetic adsorbent of Fe 3 O 4 @SiO 2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption. Applied Surface Science, 2016, 377, 30-36.	3.1	131