List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3276061/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interactions of tolcapone analogues as stabilizers of the amyloidogenic protein transthyretin. Bioorganic Chemistry, 2020, 103, 104144.	4.1	4
2	Structure-activity relationships of flurbiprofen analogues as stabilizers of the amyloidogenic protein transthyretin. Journal of Structural Biology, 2019, 208, 165-173.	2.8	11
3	Deciphering protein dynamics changes along the pathway of retinol uptake by cellular retinol-binding proteins 1 and 2. Archives of Biochemistry and Biophysics, 2018, 645, 107-116.	3.0	5
4	Dynamics and Thermodynamics of Transthyretin Association from Molecular Dynamics Simulations. BioMed Research International, 2018, 2018, 1-14.	1.9	9
5	Structural and molecular determinants affecting the interaction of retinol with human CRBP1. Journal of Structural Biology, 2017, 197, 330-339.	2.8	14
6	Structural and dynamics evidence for scaffold asymmetric flexibility of the human transthyretin tetramer. PLoS ONE, 2017, 12, e0187716.	2.5	7
7	Catalysis and Structure of Zebrafish Urate Oxidase Provide Insights into the Origin of Hyperuricemia in Hominoids. Scientific Reports, 2016, 6, 38302.	3.3	21
8	Structural evidence for asymmetric ligand binding to transthyretin. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1582-1592.	2.5	21
9	Transthyretin Binding Heterogeneity and Anti-amyloidogenic Activity of Natural Polyphenols and Their Metabolites. Journal of Biological Chemistry, 2015, 290, 29769-29780.	3.4	42
10	First trimester concentrations of the TTR-RBP4-retinol complex components as early markers of insulin-treated gestational diabetes mellitus. Clinical Chemistry and Laboratory Medicine, 2015, 53, 1643-51.	2.3	24
11	Structural evidence for native state stabilization of a conformationally labile amyloidogenic transthyretin variant by fibrillogenesis inhibitors. FEBS Letters, 2013, 587, 2325-2331.	2.8	21
12	Structural characterization of recombinant crustacyanin subunits from the lobster <i>Homarus americanus</i> . Acta Crystallographica Section F: Structural Biology Communications, 2012, 68, 846-853.	0.7	16
13	Isoform identification, recombinant production and characterization of the allergen lipid transfer protein 1 from pear (Pyr c 3). Gene, 2012, 491, 173-181.	2.2	10
14	Probing the Evolution of Hydroxyisourate Hydrolase into Transthyretin through Active-Site Redesign. Journal of Molecular Biology, 2011, 409, 504-512.	4.2	15
15	An aminotransferase branch point connects purine catabolism to amino acid recycling. Nature Chemical Biology, 2010, 6, 801-806.	8.0	26
16	The Interaction Between Retinol-Binding Protein and Transthyretin Analyzed by Fluorescence Anisotropy. Methods in Molecular Biology, 2010, 652, 189-207.	0.9	6
17	Amyloidogenic Potential of Transthyretin Variants. Journal of Biological Chemistry, 2009, 284, 25832-25841.	3.4	44
18	Vertebrate 5-Hydroxyisourate Hydrolase Identification, Function, Structure, and Evolutionary		2

Relationship with Transthyretin., 2009, , 95-108.

#	Article	IF	CITATIONS
19	Structural and mutational analyses of protein–protein interactions between transthyretin and retinolâ€binding protein. FEBS Journal, 2008, 275, 5841-5854.	4.7	34
20	Specificity of the TraA–DNA Interaction in the Regulation of the pPD1-Encoded Sex Pheromone Response in Enterococcus faecalis. Journal of Molecular Biology, 2008, 380, 932-945.	4.2	14
21	Cloning, E. coli overexpression, purification and binding properties of TraA and TraC, two proteins involved in the pheromone-dependent conjugation process in enterococci. Protein Expression and Purification, 2008, 60, 198-204.	1.3	1
22	Logical Identification of an Allantoinase Analog (puuE) Recruited from Polysaccharide Deacetylases. Journal of Biological Chemistry, 2008, 283, 23295-23304.	3.4	62
23	The Structure of 2-Oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline Decarboxylase Provides Insights into the Mechanism of Uric Acid Degradation. Journal of Biological Chemistry, 2007, 282, 18182-18189.	3.4	46
24	Acidic pH-induced Conformational Changes in Amyloidogenic Mutant Transthyretin. Journal of Molecular Biology, 2007, 366, 711-719.	4.2	38
25	Crystal Structure of Peach Pru p 3, the Prototypic Member of the Family of Plant Non-specific Lipid Transfer Protein Pan-allergens. Journal of Molecular Biology, 2006, 356, 684-694.	4.2	122
26	Structure of Zebra fish HIUase: Insights into Evolution of an Enzyme to a Hormone Transporter. Journal of Molecular Biology, 2006, 363, 1-9.	4.2	52
27	Completing the uric acid degradation pathway through phylogenetic comparison of whole genomes. Nature Chemical Biology, 2006, 2, 144-148.	8.0	197
28	Ligand-binding specificity of an invertebrate (Manduca sexta) putative cellular retinoic acid binding protein. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1747, 229-237.	2.3	15
29	Biochemical basis for retinol deficiency induced by the I41N and G75D mutations in human plasma retinol-binding protein. Biochemical and Biophysical Research Communications, 2005, 336, 1017-1022.	2.1	23
30	Plasma Retinol-Binding Protein: Structure and Interactions with Retinol, Retinoids, and Transthyretin. Vitamins and Hormones, 2004, 69, 271-295.	1.7	130
31	Purification of bacteriocin AS-48 from anEnterococcus faeciumstrain and analysis of the gene cluster involved in its production. FEMS Microbiology Letters, 2003, 221, 143-149.	1.8	15
32	High-resolution Structures of Retinol-binding Protein in Complex with Retinol: pH-induced Protein Structural Changes in the Crystal State. Journal of Molecular Biology, 2003, 329, 841-850.	4.2	30
33	Distinctive binding and structural properties of piscine transthyretin. FEBS Letters, 2003, 555, 279-284.	2.8	34
34	Ligand Binding and Structural Analysis of a Human Putative Cellular Retinol-binding Protein. Journal of Biological Chemistry, 2002, 277, 41970-41977.	3.4	80
35	Identification and Structural Analysis of a Zebrafish Apo and Holo Cellular Retinol-binding Protein. Journal of Molecular Biology, 2002, 321, 527-535.	4.2	17
36	Structure of chicken plasma retinol-binding protein. BBA - Proteins and Proteomics, 2001, 1550, 64-69.	2.1	21

#	Article	IF	CITATIONS
37	Structure at 1.44 Ã resolution of an N-terminally truncated form of the rat serum complement C3d fragment. BBA - Proteins and Proteomics, 2000, 1478, 232-238.	2.1	18
38	Specific interaction of lipoate at the active site of rhodanese. BBA - Proteins and Proteomics, 2000, 1481, 103-108.	2.1	16
39	NH2-terminal Sequence Truncation Decreases the Stability of Bovine Rhodanese, Minimally Perturbs Its Crystal Structure, and Enhances Interaction with GroEL under Native Conditions. Journal of Biological Chemistry, 1999, 274, 13938-13947.	3.4	25
40	Crystallization and preliminary X-ray data for the human transthyretin–retinol-binding protein (RBP) complex bound to an anti-RBP Fab. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 276-278.	2.5	3
41	Structure of Sulfur-Substituted Rhodanese at 1.36â€Ã Resolution. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 481-486.	2.5	23
42	Structure of the trigonal crystal form of bovine annexin IV. Biochemical Journal, 1998, 329, 101-106.	3.7	41
43	Retinoid binding to retinol-binding protein and the interference with the interaction with transthyretin. BBA - Proteins and Proteomics, 1996, 1294, 48-54.	2.1	57
44	Active Site Structural Features for Chemically Modified Forms of Rhodanese. Journal of Biological Chemistry, 1996, 271, 21054-21061.	3.4	47
45	Interactions with Retinol and Retinoids of Bovine Cellular Retinol-Binding Protein. FEBS Journal, 1995, 229, 486-493.	0.2	26
46	Crystal Structure of the Transthyretin-Retinoic-Acid Complex. FEBS Journal, 1995, 234, 563-569.	0.2	35
47	Crystal Structure of the Trigonal Form of Human Plasma Retinol-binding Protein at 2·5 à Resolution. Journal of Molecular Biology, 1993, 230, 613-624.	4.2	82
48	Retinoids: in vitro interaction with retinolâ€binding protein and influence on plasma retinol. FASEB Journal, 1993, 7, 1179-1184.	0.5	64
49	Retinol-binding protein is in the molten globule state at low pH. Biochemistry, 1992, 31, 7566-7571.	2.5	148
50	In vitro interaction of fenretinide with plasma retinol-binding protein and its functional consequences. FEBS Letters, 1992, 308, 43-45.	2.8	89
51	The piscine plasma retinol-binding protein. Purification, partial amino acid sequence and interaction with mammalian transthyretin of rainbow trout (Oncorhynchus mykiss) retinol-binding protein. FEBS Journal, 1992, 204, 99-106.	0.2	40
52	The primary structure of piscine (Oncorhynchus mykiss) retinol-binding protein and a comparison with the three-dimensional structure of mammalian retinol-binding protein. FEBS Journal, 1992, 210, 937-943.	0.2	18
53	Chemical Modification of Rhodanese with Sulphite. Free Radical Research Communications, 1991, 15, 203-209.	1.8	9
54	The bovine plasma retinol-binding protein. Amino acid sequence, interaction with transthyretin, crystallization and preliminary X-ray data. FEBS Journal, 1990, 192, 507-513.	0.2	35

#	Article	IF	CITATIONS
55	Effects on Intrinsic Fluorescence Induced by Active Site Modifications of Rhodanese. , 1989, , 87-90.		0
56	Kinetic evidence for a reversible isomerization of pig muscle glyceraldehyde-3-phosphate dehydrogenase in its crystallization medium. Archives of Biochemistry and Biophysics, 1988, 263, 121-129.	3.0	1
57	Active site modifications quench intrinsic fluorescence of rhodanese by different mechanisms. Biochemistry, 1986, 25, 7319-7323.	2.5	31
58	Purification of human plasma retinol-binding protein by hydrophobic interaction chromatography. Analytical Biochemistry, 1985, 150, 273-277.	2.4	31
59	Determination of rhodanese activity by tetrazolium reduction. Analytical Biochemistry, 1984, 142, 159-162.	2.4	9
60	Crystallization of human plasma apo-retinol-binding protein. Journal of Molecular Biology, 1984, 178, 477-479.	4.2	9
61	Spinach chloroplast glyceraldehyde-3-phosphate dehydrogenase (NADP). BBA - Proteins and Proteomics, 1983, 744, 260-264.	2.1	11
62	Interaction of rhodanese with intermediates of oxygen reduction. FEBS Letters, 1983, 162, 180-184.	2.8	26
63	Catalytic and regulatory properties of d-glyceraldehyde-3-phosphate dehydrogenase in the crystal. Journal of Molecular Biology, 1977, 110, 405-415.	4.2	23
64	A structural comparison of ligand-saturated hemoglobin with protoporphyrin globin. Journal of Molecular Biology, 1972, 70, 689-696.	4.2	11