Fujian Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3275977/publications.pdf

Version: 2024-02-01

	26567	45213
10,115	56	90
citations	h-index	g-index
193	193	10154
docs citations	times ranked	citing authors
	citations 193	10,115 56 citations h-index 193 193

#	Article	IF	CITATIONS
1	Versatile Antibacterial Materials: An Emerging Arsenal for Combatting Bacterial Pathogens. Advanced Functional Materials, 2018, 28, 1802140.	7.8	372
2	Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chemical Reviews, 2019, 119, 1666-1762.	23.0	299
3	Evaluation of Structure–Function Relationships of Aggregation-Induced Emission Luminogens for Simultaneous Dual Applications of Specific Discrimination and Efficient Photodynamic Killing of Gram-Positive Bacteria. Journal of the American Chemical Society, 2019, 141, 16781-16789.	6.6	295
4	Rational design and latest advances of polysaccharide-based hydrogels for wound healing. Biomaterials Science, 2020, 8, 2084-2101.	2.6	245
5	pH- and temperature-responsive hydrogels from crosslinked triblock copolymers prepared via consecutive atom transfer radical polymerizations. Biomaterials, 2006, 27, 2787-2797.	5.7	229
6	Rough Carbon–Iron Oxide Nanohybrids for Near-Infrared-II Light-Responsive Synergistic Antibacterial Therapy. ACS Nano, 2021, 15, 7482-7490.	7.3	218
7	Polycationic Synergistic Antibacterial Agents with Multiple Functional Components for Efficient Antiâ€Infective Therapy. Advanced Functional Materials, 2018, 28, 1706709.	7.8	193
8	Thermogels: In Situ Gelling Biomaterial. ACS Biomaterials Science and Engineering, 2016, 2, 295-316.	2.6	176
9	Rattle-Structured Rough Nanocapsules with <i>in-Situ</i> -Formed Gold Nanorod Cores for Complementary Gene/Chemo/Photothermal Therapy. ACS Nano, 2018, 12, 5646-5656.	7.3	166
10	Well-Defined Gold Nanorod/Polymer Hybrid Coating with Inherent Antifouling and Photothermal Bactericidal Properties for Treating an Infected Hernia. ACS Nano, 2020, 14, 2265-2275.	7.3	166
11	Biomolecule-functionalized polymer brushes. Chemical Society Reviews, 2013, 42, 3394.	18.7	153
12	Threeâ€Pronged Attack by Homologous Farâ€red/NIR AlEgens to Achieve 1+1+1>3 Synergistic Enhanced Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 9610-9616.	7.2	146
13	lonic Conductivity of Polyelectrolyte Hydrogels. ACS Applied Materials & Interfaces, 2018, 10, 5845-5852.	4.0	144
14	Biodegradable Antibacterial Polymeric Nanosystems: A New Hope to Cope with Multidrugâ€Resistant Bacteria. Small, 2019, 15, e1900999.	5.2	135
15	Versatile Functionalization of Polysaccharides via Polymer Grafts: From Design to Biomedical Applications. Accounts of Chemical Research, 2017, 50, 281-292.	7.6	132
16	Pentablock copolymers of poly(ethylene glycol), poly((2-dimethyl amino)ethyl methacrylate) and poly(2-hydroxyethyl methacrylate) from consecutive atom transfer radical polymerizations for non-viral gene delivery. Biomaterials, 2008, 29, 3023-3033.	5.7	129
17	Redoxâ€Responsive and Drugâ€Embedded Silica Nanoparticles with Unique Selfâ€Destruction Features for Efficient Gene/Drug Codelivery. Advanced Functional Materials, 2017, 27, 1606229.	7.8	128
18	Molecular Sizes and Antibacterial Performance Relationships of Flexible Ionic Liquid Derivatives. Journal of the American Chemical Society, 2020, 142, 20257-20269.	6.6	128

#	Article	IF	Citations
19	Photo-responsive supramolecular hyaluronic acid hydrogels for accelerated wound healing. Journal of Controlled Release, 2020, 323, 24-35.	4.8	128
20	Biofilmâ€Sensitive Photodynamic Nanoparticles for Enhanced Penetration and Antibacterial Efficiency. Advanced Functional Materials, 2021, 31, 2103591.	7.8	128
21	Silica-Coated Gold–Silver Nanocages as Photothermal Antibacterial Agents for Combined Anti-Infective Therapy. ACS Applied Materials & Samp; Interfaces, 2019, 11, 17177-17183.	4.0	126
22	Natural Melanin/Alginate Hydrogels Achieve Cardiac Repair through ROS Scavenging and Macrophage Polarization. Advanced Science, 2021, 8, e2100505.	5.6	126
23	Reduction-responsive multifunctional hyperbranched polyaminoglycosides with excellent antibacterial activity, biocompatibility and gene transfection capability. Biomaterials, 2016, 106, 134-143.	5.7	120
24	Dualâ€Crosslinked Amorphous Polysaccharide Hydrogels Based on Chitosan/Alginate for Wound Healing Applications. Macromolecular Rapid Communications, 2018, 39, e1800069.	2.0	111
25	Engineering Plateletâ€Rich Plasma Based Dualâ€Network Hydrogel as a Bioactive Wound Dressing with Potential Clinical Translational Value. Advanced Functional Materials, 2021, 31, 2009258.	7.8	111
26	Multifunctional antimicrobial materials: From rational design to biomedical applications. Progress in Materials Science, 2022, 125, 100887.	16.0	108
27	Functionalization of Chitosan via Atom Transfer Radical Polymerization for Gene Delivery. Advanced Functional Materials, 2010, 20, 3106-3116.	7.8	106
28	A biocleavable pullulan-based vector via ATRP for liver cell-targeting gene delivery. Biomaterials, 2014, 35, 3873-3884.	5.7	106
29	Redox-Responsive Polycation-Functionalized Cotton Cellulose Nanocrystals for Effective Cancer Treatment. ACS Applied Materials & Samp; Interfaces, 2015, 7, 8942-8951.	4.0	103
30	NIRâ€Responsive Polycationic Gatekeeperâ€Cloaked Heteroâ€Nanoparticles for Multimodal Imagingâ€Guided Tripleâ€Combination Therapy of Cancer. Small, 2017, 13, 1603133.	5.2	102
31	Antimicrobial Peptide-Conjugated Hierarchical Antifouling Polymer Brushes for Functionalized Catheter Surfaces. Biomacromolecules, 2019, 20, 4171-4179.	2.6	101
32	The shape and size effects of polycation functionalized silica nanoparticles on gene transfection. Acta Biomaterialia, 2015, 11, 381-392.	4.1	91
33	Ultrafast discrimination of Gram-positive bacteria and highly efficient photodynamic antibacterial therapy using near-infrared photosensitizer with aggregation-induced emission characteristics. Biomaterials, 2020, 230, 119582.	5.7	91
34	Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants. Biomacromolecules, 2018, 19, 2805-2811.	2.6	89
35	Unlockable Nanocomplexes with Selfâ€Accelerating Nucleic Acid Release for Effective Staged Gene Therapy of Cardiovascular Diseases. Advanced Materials, 2018, 30, e1801570.	11.1	89
36	Material solutions for delivery of CRISPR/Cas-based genome editing tools: Current status and future outlook. Materials Today, 2019, 26, 40-66.	8.3	89

#	Article	IF	CITATIONS
37	Multifunctional polycationic photosensitizer conjugates with rich hydroxyl groups for versatile water-soluble photodynamic therapy nanoplatforms. Biomaterials, 2017, 117, 77-91.	5.7	88
38	Controlled Synthesis and Surface Engineering of Janus Chitosanâ€Gold Nanoparticles for Photoacoustic Imagingâ€Guided Synergistic Gene/Photothermal Therapy. Small, 2021, 17, e2006004.	5.2	87
39	Hemostatic porous sponges of cross-linked hyaluronic acid/cationized dextran by one self-foaming process. Materials Science and Engineering C, 2018, 83, 160-168.	3.8	86
40	Biomedical polymers: synthesis, properties, and applications. Science China Chemistry, 2022, 65, 1010-1075.	4.2	85
41	A highly efficient and AIE-active theranostic agent from natural herbs. Materials Chemistry Frontiers, 2019, 3, 1454-1461.	3.2	82
42	Selfâ€Adaptive Antibacterial Porous Implants with Sustainable Responses for Infected Bone Defect Therapy. Advanced Functional Materials, 2019, 29, 1807915.	7.8	82
43	Biocleavable comb-shaped gene carriers from dextran backbones with bioreducible ATRP initiation sites. Biomaterials, 2012, 33, 1873-1883.	5.7	78
44	Supramolecular pseudo-block gene carriers based on bioreducible star polycations. Biomaterials, 2013, 34, 5411-5422.	5.7	78
45	Self-Assembled Herbal Medicine Encapsulated by an Oxidation-Sensitive Supramolecular Hydrogel for Chronic Wound Treatment. ACS Applied Materials & Eamp; Interfaces, 2020, 12, 56898-56907.	4.0	77
46	Cationic Polymerâ€Mediated CRISPR/Cas9 Plasmid Delivery for Genome Editing. Macromolecular Rapid Communications, 2019, 40, e1800068.	2.0	72
47	Redox-Triggered Gatekeeper-Enveloped Starlike Hollow Silica Nanoparticles for Intelligent Delivery Systems. Small, 2015, 11, 6467-6479.	5.2	70
48	Significant Enhancement of Photothermal and Photoacoustic Efficiencies for Semiconducting Polymer Nanoparticles through Simply Molecular Engineering. Advanced Functional Materials, 2018, 28, 1800135.	7.8	68
49	Electroactive poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) with controllable antifouling and antimicrobial properties. Chemical Science, 2016, 7, 1976-1981.	3.7	66
50	Gold nanoparticle-conjugated heterogeneous polymer brush-wrapped cellulose nanocrystals prepared by combining different controllable polymerization techniques for theranostic applications. Polymer Chemistry, 2016, 7, 3107-3116.	1.9	62
51	Multifunctional pDNA-Conjugated Polycationic Au Nanorod-Coated Fe ₃ O ₄ Hierarchical Nanocomposites for Trimodal Imaging and Combined Photothermal/Gene Therapy. Small, 2016, 12, 2459-2468.	5.2	61
52	Fluorinated Acid‣abile Branched Hydroxylâ€Rich Nanosystems for Flexible and Robust Delivery of Plasmids. Small, 2018, 14, e1803061.	5.2	61
53	Polysaccharide–Peptide Conjugates: A Versatile Material Platform for Biomedical Applications. Advanced Functional Materials, 2021, 31, 2005978.	7.8	61
54	Wearable, Washable, and Highly Sensitive Piezoresistive Pressure Sensor Based on a 3D Sponge Network for Real-Time Monitoring Human Body Activities. ACS Applied Materials & Samp; Interfaces, 2021, 13, 46848-46857.	4.0	61

#	Article	IF	CITATIONS
55	Hierarchical Nanohybrids of Gold Nanorods and PGMAâ€Based Polycations for Multifunctional Theranostics. Advanced Functional Materials, 2016, 26, 5848-5861.	7.8	58
56	Polycation-functionalized gold nanoparticles with different morphologies for superior gene transfection. Nanoscale, 2015, 7, 5281-5291.	2.8	57
57	Versatile types of hydroxyl-rich polycationic systems via O-heterocyclic ring-opening reactions: From strategic design to nucleic acid delivery applications. Progress in Polymer Science, 2018, 78, 56-91.	11.8	57
58	Multiple types of hydroxyl-rich cationic derivatives of PGMA for broad-spectrum antibacterial and antifouling coatings. Polymer Chemistry, 2016, 7, 5709-5718.	1.9	56
59	Hydroxylâ€Rich Polycation Brushed Multifunctional Rareâ€Earthâ€Gold Core–Shell Nanorods for Versatile Therapy Platforms. Advanced Functional Materials, 2017, 27, 1701255.	7.8	55
60	Self-adaptive antibacterial surfaces with bacterium-triggered antifouling-bactericidal switching properties. Biomaterials Science, 2020, 8, 997-1006.	2.6	55
61	Self-assembly of oxidation-responsive polyethylene glycol-paclitaxel prodrug for cancer chemotherapy. Journal of Controlled Release, 2020, 321, 529-539.	4.8	55
62	Biomassâ€DerivedÂMultilayerâ€Structured Microparticles for Accelerated Hemostasis and Bone Repair. Advanced Science, 2020, 7, 2002243.	5.6	54
63	Highly sensitive and stable zwitterionic poly(sulfobetaine-3,4-ethylenedioxythiophene) (PSBEDOT) glucose biosensor. Chemical Science, 2018, 9, 2540-2546.	3.7	53
64	Orchestrated Yolk–Shell Nanohybrids Regulate Macrophage Polarization and Dendritic Cell Maturation for Oncotherapy with Augmented Antitumor Immunity. Advanced Materials, 2022, 34, e2108263.	11.1	53
65	Biocleavable graphene oxide based-nanohybrids synthesized via ATRP for gene/drug delivery. Nanoscale, 2014, 6, 6141.	2.8	52
66	Effective Codelivery of IncRNA and pDNA by Pullulanâ€Based Nanovectors for Promising Therapy of Hepatocellular Carcinoma. Advanced Functional Materials, 2016, 26, 7314-7325.	7.8	51
67	A Lactoseâ€Derived CRISPR/Cas9 Delivery System for Efficient Genome Editing In Vivo to Treat Orthotopic Hepatocellular Carcinoma. Advanced Science, 2020, 7, 2001424.	5. 6	50
68	Well-Defined Peapod-like Magnetic Nanoparticles and Their Controlled Modification for Effective Imaging Guided Gene Therapy. ACS Applied Materials & Samp; Interfaces, 2016, 8, 11298-11308.	4.0	46
69	PGMA-based supramolecular hyperbranched polycations for gene delivery. Polymer Chemistry, 2016, 7, 4334-4341.	1.9	45
70	Well-defined reducible cationic nanogels based on functionalized low-molecular-weight PGMA for effective pDNA and siRNA delivery. Acta Biomaterialia, 2016, 41, 282-292.	4.1	45
71	Wellâ€Defined Proteinâ€Based Supramolecular Nanoparticles with Excellent MRI Abilities for Multifunctional Delivery Systems. Advanced Functional Materials, 2016, 26, 2855-2865.	7.8	45
72	Multifunctional hetero-nanostructures of hydroxyl-rich polycation wrapped cellulose-gold hybrids for combined cancer therapy. Journal of Controlled Release, 2017, 255, 154-163.	4.8	45

#	Article	IF	CITATIONS
73	An overview of chitosan and its application in infectious diseases. Drug Delivery and Translational Research, 2021, 11, 1340-1351.	3.0	45
74	Dual-Functional Implants with Antibacterial and Osteointegration-Promoting Performances. ACS Applied Materials & Eamp; Interfaces, 2019, 11, 36449-36457.	4.0	43
75	Degradable one-dimensional dextran-iron oxide nanohybrids for MRI-guided synergistic gene/photothermal/magnetolytic therapy. Nano Today, 2021, 38, 101118.	6.2	43
76	Poly(aspartic acid)-based Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Delivery. ACS Applied Materials & Degradable Assemblies for Highly Efficient Gene Deli	4.0	42
77	Properties of Electropolymerized Dopamine and Its Analogues. Langmuir, 2019, 35, 1119-1125.	1.6	42
78	Biomineralized calcium carbonate nanohybrids for mild photothermal heating-enhanced gene therapy. Biomaterials, 2021, 274, 120885.	5.7	42
79	Chemiluminescence: From mechanism to applications in biological imaging and therapy. Aggregate, 2021, 2, e140.	5.2	42
80	A facile strategy to functionalize gold nanorods with polycation brushes for biomedical applications. Acta Biomaterialia, 2014, 10, 3786-3794.	4.1	41
81	Acid-Labile Poly(glycidyl methacrylate)-Based Star Gene Vectors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12238-12248.	4.0	41
82	Versatile Types of MRI-Visible Cationic Nanoparticles Involving Pullulan Polysaccharides for Multifunctional Gene Carriers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3919-3927.	4.0	41
83	Phthalocyanine functionalized poly(glycidyl methacrylate) nano-assemblies for photodynamic inactivation of bacteria. Biomaterials Science, 2019, 7, 1905-1918.	2.6	40
84	Glycosaminoglycan-Based Hydrogel Delivery System Regulates the Wound Microenvironment to Rescue Chronic Wound Healing. ACS Applied Materials & Samp; Interfaces, 2022, 14, 31737-31750.	4.0	39
85	Versatile types of polysaccharide-based supramolecular polycation/pDNA nanoplexes for gene delivery. Nanoscale, 2014, 6, 7560.	2.8	38
86	Organic/inorganic nanocomposites for cancer immunotherapy. Materials Chemistry Frontiers, 2020, 4, 2571-2609.	3.2	38
87	Assemblies of indocyanine green and chemotherapeutic drug to cure established tumors by synergistic chemo-photo therapy. Journal of Controlled Release, 2020, 324, 250-259.	4.8	38
88	New Low Molecular Weight Polycation-Based Nanoparticles for Effective Codelivery of pDNA and Drug. ACS Applied Materials & mp; Interfaces, 2014, 6, 17911-17919.	4.0	37
89	Zwitterionic Polyurethanes with Tunable Surface and Bulk Properties. ACS Applied Materials & Samp; Interfaces, 2018, 10, 37609-37617.	4.0	37
90	Glioma stem cells targeted by oncolytic virus carrying endostatin–angiostatin fusion gene and the expression of its exogenous gene in vitro. Brain Research, 2011, 1390, 59-69.	1.1	36

#	Article	IF	Citations
91	Multifunctional cationic nanosystems for nucleic acid therapy of thoracic aortic dissection. Nature Communications, 2019, 10, 3184.	5.8	36
92	Bioswitchable Antibacterial Coatings Enable Selfâ€Sterilization of Implantable Healthcare Dressings. Advanced Functional Materials, 2021, 31, 2011165.	7.8	36
93	Bacteriaâ€Targeting Photodynamic Nanoassemblies for Efficient Treatment of Multidrugâ€Resistant Biofilm Infected Keratitis. Advanced Functional Materials, 2022, 32, .	7.8	36
94	A general strategy to prepare different types of polysaccharide- graft -poly(aspartic acid) as degradable gene carriers. Acta Biomaterialia, 2015, 12, 156-165.	4.1	35
95	Facilitation of Gene Transfection and Cell Adhesion by Gelatinâ€Functionalized PCL Film Surfaces. Advanced Functional Materials, 2012, 22, 1835-1842.	7.8	33
96	Genetically multimodal therapy mediated by one polysaccharides-based supramolecular nanosystem. Biomaterials, 2020, 248, 120031.	5.7	33
97	Versatile functionalization of gene vectors via different types of zwitterionic betaine species for serum-tolerant transfection. Acta Biomaterialia, 2013, 9, 7439-7448.	4.1	31
98	Self-destructible polysaccharide nanocomposites with unlockable Au nanorods for high-performance photothermal therapy. NPG Asia Materials, 2018, 10, 509-521.	3.8	31
99	pH-Responsive Degradable Dextran-Quantum Dot Nanohybrids for Enhanced Gene Delivery. ACS Applied Materials & Samp; Interfaces, 2019, 11, 34707-34716.	4.0	30
100	Effective Delivery of Hypertrophic miRNA Inhibitor by Cholesterolâ€Containing Nanocarriers for Preventing Pressure Overload Induced Cardiac Hypertrophy. Advanced Science, 2019, 6, 1900023.	5.6	30
101	Facile Surface Multi-Functionalization of Biomedical Catheters with Dual-Microcrystalline Broad-Spectrum Antibacterial Drugs and Antifouling Poly(ethylene glycol) for Effective Inhibition of Bacterial Infections. ACS Applied Bio Materials, 2019, 2, 1348-1356.	2.3	29
102	Organic/inorganic nanohybrids as multifunctional gene delivery systems. Journal of Gene Medicine, 2019, 21, e3084.	1.4	29
103	Ligand-functionalized degradable polyplexes formed by cationic poly(aspartic acid)-grafted chitosan–cyclodextrin conjugates. Nanoscale, 2015, 7, 5803-5814.	2.8	28
104	Controllable Heparin-Based Comb Copolymers and Their Self-assembled Nanoparticles for Gene Delivery. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8376-8385.	4.0	28
105	Polycaprolactone/polysaccharide functional composites for low-temperature fused deposition modelling. Bioactive Materials, 2020, 5, 185-191.	8.6	28
106	Cascade-responsive nano-assembly for efficient photothermal-chemo synergistic inhibition of tumor metastasis by targeting cancer stem cells. Biomaterials, 2022, 280, 121305.	5.7	28
107	Enhanced Antitumor Efficacy of an Oncolytic Herpes Simplex Virus Expressing an Endostatin–Angiostatin Fusion Gene in Human Glioblastoma Stem Cell Xenografts. PLoS ONE, 2014, 9, e95872.	1.1	27
108	Overexpression of STAT1 suppresses angiogenesis under hypoxia by regulating VEGF‑A in human glioma cells. Biomedicine and Pharmacotherapy, 2018, 104, 566-575.	2.5	27

#	Article	IF	CITATIONS
109	Selfâ€assembled organic/metal ion nanohybrids for theranostics. View, 2020, 1, e17.	2.7	27
110	Hollow Nanostars with Photothermal Gold Caps and Their Controlled Surface Functionalization for Complementary Therapies. Advanced Functional Materials, 2017, 27, 1700256.	7.8	26
111	Identification of type IV collagen exposure as a molecular imaging target for early detection of thoracic aortic dissection. Theranostics, 2018, 8, 437-449.	4.6	26
112	CD133 positive U87 glioblastoma cells-derived exosomal microRNAs in hypoxia- versus normoxia-microenviroment. Journal of Neuro-Oncology, 2017, 135, 37-46.	1.4	25
113	One nanosystem with potent antibacterial and gene-delivery performances accelerates infected wound healing. Nano Today, 2021, 39, 101224.	6.2	25
114	Controllable Disulfide Exchange Polymerization of Polyguanidine for Effective Biomedical Applications by Thiolâ€Mediated Uptake. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
115	Staged self-assembly of PAMAM dendrimers into macroscopic aggregates with a microribbon structure similar to that of amelogenin. Soft Matter, 2013, 9, 7553.	1.2	24
116	Inhibition of fatty acid synthase suppresses neovascularization via regulating the expression of VEGF-A in glioma. Journal of Cancer Research and Clinical Oncology, 2016, 142, 2447-2459.	1.2	24
117	Versatile Functionalization of Poly(methacrylic acid) Brushes with Series of Proteolytically Cleavable Peptides for Highly Sensitive Protease Assay. ACS Applied Materials & Samp; Interfaces, 2017, 9, 127-135.	4.0	24
118	Structure–Function Relationships of a Tertiary Amine-Based Polycarboxybetaine. Langmuir, 2015, 31, 9965-9972.	1.6	23
119	pH-Sensitive Poly(histidine methacrylamide). Langmuir, 2016, 32, 6544-6550.	1.6	23
120	MicroRNA-mediated silence of onco-lncRNA MALAT1 in different ESCC cells via ligand-functionalized hydroxyl-rich nanovectors. Nanoscale, 2017, 9, 2521-2530.	2.8	23
121	Rodlike Supramolecular Nanoassemblies of Degradable Poly(Aspartic Acid) Derivatives and Hydroxylâ€Rich Polycations for Effective Delivery of Versatile Tumorâ€Suppressive ncRNAs. Small, 2018, 14, 1703152.	5.2	23
122	Calcium carbonate-methylene blue nanohybrids for photodynamic therapy and ultrasound imaging. Science China Life Sciences, 2018, 61, 483-491.	2.3	23
123	Oxidationâ€Responsive Nanoassemblies for Lightâ€Enhanced Gene Therapy. Small, 2019, 15, e1904017.	5.2	23
124	Peptide-grafted dextran vectors for efficient and high-loading gene delivery. Biomaterials Science, 2019, 7, 1543-1553.	2.6	23
125	CRISPR/Cas9 Delivery Mediated with Hydroxylâ€Rich Nanosystems for Gene Editing in Aorta. Advanced Science, 2019, 6, 1900386.	5.6	23
126	A Facile Strategy to Prepare Hyperbranched Hydroxyl-Rich Polycations for Effective Gene Therapy. ACS Applied Materials & Diterfaces, 2016, 8, 29334-29342.	4.0	22

#	Article	IF	Citations
127	Threeâ€Pronged Attack by Homologous Farâ€red/NIR AlEgens to Achieve 1+1+1>3 Synergistic Enhanced Photodynamic Therapy. Angewandte Chemie, 2020, 132, 9697-9703.	1.6	22
128	Versatile functionalization of amylopectin for effective biomedical applications. Science China Chemistry, 2015, 58, 1461-1470.	4.2	21
129	Gd(III) ion-chelated supramolecular assemblies composed of PGMA-based polycations for effective biomedical applications. NPG Asia Materials, 2015, 7, e197-e197.	3.8	21
130	Polycation–Carbon Nanohybrids with Superior Rough Hollow Morphology for the NIR-II Responsive Multimodal Therapy. ACS Applied Materials & Distribution (12, 11341-11352).	4.0	21
131	Flexible Cationic Nanoparticles with Photosensitizer Cores for Multifunctional Biomedical Applications. Small, 2018, 14, e1800201.	5.2	20
132	Multifunctional Delivery Nanosystems Formed by Degradable Antibacterial Poly(Aspartic Acid) Derivatives for Infected Skin Defect Therapy. Advanced Healthcare Materials, 2019, 8, e1800889.	3.9	20
133	Facile synthesis of wormlike quantum dots-encapsulated nanoparticles and their controlled surface functionalization for effective bioapplications. Nano Research, 2016, 9, 2531-2543.	5.8	19
134	Reducible polyrotaxane-based pseudo-comb polycations via consecutive ATRP processes for gene delivery. Acta Biomaterialia, 2016, 32, 110-119.	4.1	19
135	Reduction-Responsive Nucleic Acid Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent Restenosis in Rabbits. ACS Applied Materials & Delivery Systems To Prevent Restenosis in Rabbits. ACS Applied Materials & De	4.0	19
136	More than skin deep: using polymers to facilitate topical delivery of nitric oxide. Biomaterials Science, 2021, 9, 391-405.	2.6	19
137	(Coixan polysaccharide) <i>â€graftâ€</i> Polyethylenimine Folate for Tumorâ€Targeted Gene Delivery. Macromolecular Bioscience, 2011, 11, 435-444.	2.1	18
138	Efficient Gene Carriers Composed of 2â€Hydroxypropylâ€Î²â€Cyclodextrin, Ethanolamineâ€Functionalized Poly(glycidyl methacrylate), and Poly((2â€dimethyl amino)ethyl methacrylate) by Combination of ATRP and Click Chemistry. Macromolecular Bioscience, 2014, 14, 1135-1148.	2.1	18
139	Multifunctional hybrids with versatile types of nanoparticles <i>via</i> self-assembly for complementary tumor therapy. Nanoscale, 2018, 10, 7649-7657.	2.8	18
140	Rational Design of Peptide-Functionalized Poly(Methacrylic Acid) Brushes for On-Chip Detection of Protease Biomarkers. ACS Biomaterials Science and Engineering, 2018, 4, 2018-2025.	2.6	18
141	NIR-responsive polydopamine-based calcium carbonate hybrid nanoparticles delivering artesunate for cancer chemo-photothermal therapy. Acta Biomaterialia, 2022, 145, 135-145.	4.1	18
142	PGMA-based starlike polycations with flanking phenylboronic acid groups for highly efficient multifunctional gene delivery systems. Polymer Chemistry, 2015, 6, 6208-6218.	1.9	17
143	PGMA-based gene carriers with lipid molecules. Biomaterials Science, 2016, 4, 1233-1243.	2.6	17
144	High-performance cationic polyrotaxanes terminated with polypeptides as promising nucleic acid delivery systems. Polymer Chemistry, 2018, 9, 2281-2289.	1.9	17

#	Article	IF	CITATIONS
145	A flexible bowl-shaped magnetic assembly for multifunctional gene delivery systems. Nanoscale, 2019, 11, 16463-16475.	2.8	16
146	A Hybrid Nanovector of Suicide Gene Engineered Lentivirus Coated with Bioreducible Polyaminoglycosides for Enhancing Therapeutic Efficacy against Glioma. Advanced Functional Materials, 2019, 29, 1807104.	7.8	16
147	Charge-reversal nanocomolexes-based CRISPR/Cas9 delivery system for loss-of-function oncogene editing in hepatocellular carcinoma. Journal of Controlled Release, 2021, 333, 362-373.	4.8	16
148	A series of new supramolecular polycations for effective gene transfection. Polymer Chemistry, 2015, 6, 2466-2477.	1.9	15
149	Autocrine BMP4 Signaling Enhances Tumor Aggressiveness via Promoting Wnt/ \hat{l}^2 -Catenin Signaling in IDH1-mutant Gliomas. Translational Oncology, 2020, 13, 125-134.	1.7	15
150	Tunable Adhesion of Different Cell Types Modulated by Thermoresponsive Polymer Brush Thickness. Biomacromolecules, 2020, 21, 732-742.	2.6	15
151	Reversible Treatment of Pressure Overloadâ€Induced Left Ventricular Hypertrophy through <i>Drd5</i> Nucleic Acid Delivery Mediated by Functional Polyaminoglycoside. Advanced Science, 2021, 8, 2003706.	5.6	15
152	A hydrophobic cationic polyphenol coating for versatile antibacterial and hemostatic devices. Chemical Engineering Journal, 2022, 444, 135426.	6.6	15
153	Synthesis and characterization of an enzyme-degradable zwitterionic dextran hydrogel. RSC Advances, 2016, 6, 30862-30866.	1.7	14
154	The methylation status of the platelet-derived growth factor-B gene promoter and its regulation of cellular proliferation following folate treatment in human glioma cells. Brain Research, 2014, 1556, 57-66.	1.1	13
155	PGMA-Based Cationic Nanoparticles with Polyhydric Iodine Units for Advanced Gene Vectors. Bioconjugate Chemistry, 2016, 27, 2744-2754.	1.8	13
156	Versatile Types of Cyclodextrinâ€Based Nucleic Acid Delivery Systems. Advanced Healthcare Materials, 2021, 10, e2001183.	3.9	13
157	Functionalized PGMA nanoparticles with aggregation-induced emission characteristics for gene delivery systems. Polymer Chemistry, 2016, 7, 5630-5640.	1.9	12
158	Functional Nanocomplexes with Vascular Endothelial Growth Factor A/C Isoforms Improve Collateral Circulation and Cardiac Function. Small, 2020, 16, 1905925.	5.2	12
159	Phenylboronic acid-functionalized polyaminoglycoside as an effective CRISPR/Cas9 delivery system. Biomaterials Science, 2021, 9, 7104-7114.	2.6	12
160	Polysaccharides-based nanohybrids: Promising candidates for biomedical materials. Science China Materials, 2019, 62, 1831-1836.	3.5	11
161	Two-dimensional copper metal-organic frameworks as antibacterial agents for biofilm treatment. Science China Technological Sciences, 2022, 65, 1052-1058.	2.0	11
162	pH-Responsive hyaluronic acid-cloaked polycation/gold nanohybrids for tumor-targeted synergistic photothermal/gene therapy. Biomaterials Science, 2022, 10, 2618-2627.	2.6	11

#	Article	IF	CITATIONS
163	Inhalable responsive polysaccharide-based antibiotic delivery nanoparticles to overcome mucus barrier for lung infection treatment. Nano Today, 2022, 44, 101489.	6.2	11
164	VP22 and cytosine deaminase fusion gene modified tissue-engineered neural stem cells for glioma therapy. Journal of Cancer Research and Clinical Oncology, 2013, 139, 475-483.	1.2	10
165	Gradient Functionalization of Various Quaternized Polyethylenimines on Microfluidic Chips for the Rapid Appraisal of Antibacterial Potencies. Langmuir, 2020, 36, 354-361.	1.6	10
166	Antibacterial plasticizers based on bio-based engineering elastomers for medical PVC: synthesis, characterization and properties. Polymer Chemistry, 2021, 12, 1114-1124.	1.9	10
167	Ferritin heavy chain as a molecular imaging reporter gene in glioma xenografts. Journal of Cancer Research and Clinical Oncology, 2017, 143, 941-951.	1.2	9
168	Flexible Photothermal Assemblies with Tunable Gold Patterns for Improved Imagingâ€Guided Synergistic Therapy. Small, 2020, 16, 2002790.	5.2	9
169	Bulk Modification of Thermoplastic Polyurethanes for Selfâ€Sterilization of Trachea Intubation. Macromolecular Bioscience, 2021, 21, e2000318.	2.1	9
170	A natural polysaccharide-based antibacterial functionalization strategy for liquid and air filtration membranes. Journal of Materials Chemistry B, 2022, 10, 2471-2480.	2.9	9
171	Intestinal Gastrin/CCKBR (Cholecystokinin B Receptor) Ameliorates Salt-Sensitive Hypertension by Inhibiting Intestinal Na ⁺ /H ⁺ Exchanger 3 Activity Through a PKC (Protein) Tj ETQq1 1	01784314	r g BT /Overl
172	Biomimetic Dextran–Peptide Vectors for Efficient and Safe siRNA Delivery. ACS Applied Bio Materials, 2019, 2, 1456-1463.	2.3	8
173	Antitumor efficacy of oncolytic HSV-1 expressing cytosine deaminase is synergistically enhanced by DPD down-regulation and EMT inhibition in uveal melanoma xenograft. Cancer Letters, 2020, 495, 123-134.	3.2	8
174	mir15a/mir16â€1 cluster and its novel targeting molecules negatively regulate cardiac hypertrophy. Clinical and Translational Medicine, 2020, 10, e242.	1.7	8
175	Self-Assembled Nucleotide/Saccharide-Tethering Polycation-Based Nanoparticle for Targeted Tumor Therapy. , 2020, 2, 550-556.		7
176	Smart Polymeric Delivery System for Antitumor and Antimicrobial Photodynamic Therapy. Frontiers in Bioengineering and Biotechnology, 2021, 9, 783354.	2.0	7
177	Series of In Situ Photoinduced Polymer Graftings for Sensitive Detection of Protein Biomarkers via Cascade Amplification of Liquid Crystal Signals. Biomacromolecules, 2018, 19, 1959-1965.	2.6	6
178	Polyaminoglycoside-mediated cell reprogramming system for the treatment of diabetes mellitus. Journal of Controlled Release, 2022, 343, 420-433.	4.8	5
179	Heparinized anticoagulant coatings based on polyphenol-amine inspired chemistry for blood-contacting catheters. Journal of Materials Chemistry B, 2022, 10, 1795-1804.	2.9	5
180	Flexible electrostatic hydrogels from marine organism for nitric oxide-enhanced photodynamic therapy against multidrug-resistant bacterial infection. Science China Materials, 2022, 65, 2850-2860.	3 . 5	5

#	Article	lF	CITATIONS
181	Polyethylene glycolâ€polyethylenimineâ€tetrachloroplatinum (IV): A novel conjugate with good abilities of antitumor and gene delivery. Journal of Applied Polymer Science, 2012, 123, 1509-1517.	1.3	4
182	Ran binding protein 9 (RanBPM) binds IFN-l̂»R1 in the IFN-l̂» signaling pathway. Science China Life Sciences, 2017, 60, 1030-1039.	2.3	4
183	Degradable branched polycationic systems for nucleic acid delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2020, 12, e1631.	3.3	4
184	In Situ Preparation of Mechanically Enhanced Hydrogel via Dispersion Polymerization in Aqueous Solution. Macromolecular Rapid Communications, 2021, 42, e2100028.	2.0	4
185	Supramolecular Hydrogel Based on Pseudopolyrotaxane Aggregation for Bacterial Microenvironmentâ€Responsive Antibiotic Delivery. Chemistry - an Asian Journal, 2022, 17, .	1.7	4
186	A facile strategy to modulate the fluorescent properties of star polymers by varying the arm numbers. Journal of Polymer Research, 2012, 19, 1.	1.2	3
187	The enhanced efficacy of herpes simplex virus by lentivirus mediated VP22 and cytosine deaminase gene therapy against glioma. Brain Research, 2020, 1743, 146898.	1.1	3
188	Establishment of the glioma polyploid giant cancer cell model by a modified PHA-DMSO-PEG fusion method following dual drug-fluorescence screening in vitro. Journal of Neuroscience Methods, 2022, 368, 109462.	1.3	2
189	Controllable Disulfide Exchange Polymerization of Polyguanidine for Effective Biomedical Applications by Thiolâ€Mediated Uptake. Angewandte Chemie, 2022, 134, .	1.6	1
190	Rattle-Structured Rough Nanocapsules with In Situ-Formed Gold Nanorod Cores for Complementary Gene/Chemo/Photothermal Therapy. Biomaterial Engineering, 2022, , 417-436.	0.1	0