Guoxiong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3275657/publications.pdf Version: 2024-02-01

		53794	48315
142	8,613	45	88
papers	citations	h-index	g-index
143	143	143	5168
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Thermal Controls on the Asian Summer Monsoon. Scientific Reports, 2012, 2, 404.	3.3	615
2	The Influence of Mechanical and Thermal Forcing by the Tibetan Plateau on Asian Climate. Journal of Hydrometeorology, 2007, 8, 770-789.	1.9	611
3	How to Measure the Strength of the East Asian Summer Monsoon. Journal of Climate, 2008, 21, 4449-4463.	3.2	544
4	Tibetan Plateau warming and precipitation changes in East Asia. Geophysical Research Letters, 2008, 35,	4.0	543
5	Tibetan Plateau Forcing and the Timing of the Monsoon Onset over South Asia and the South China Sea. Monthly Weather Review, 1998, 126, 913-927.	1.4	501
6	Tibetan Plateau climate dynamics: recent research progress and outlook. National Science Review, 2015, 2, 100-116.	9.5	342
7	The flexible global ocean-atmosphere-land system model, Grid-point Version 2: FGOALS-g2. Advances in Atmospheric Sciences, 2013, 30, 543-560.	4.3	253
8	The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2. Advances in Atmospheric Sciences, 2013, 30, 561-576.	4.3	210
9	Change of cloud amount and the climate warming on the Tibetan Plateau. Geophysical Research Letters, 2006, 33, .	4.0	205
10	Weakening Trend in the Atmospheric Heat Source over the Tibetan Plateau during Recent Decades. Part I: Observations. Journal of Climate, 2008, 21, 3149-3164.	3.2	180
11	Advances in studying interactions between aerosols and monsoon in China. Science China Earth Sciences, 2016, 59, 1-16.	5.2	153
12	New proofs of the recent climate warming over the Tibetan Plateau as a result of the increasing greenhouse gases emissions. Science Bulletin, 2006, 51, 1396-1400.	1.7	151
13	Relationship between the Subtropical Anticyclone and Diabatic Heating. Journal of Climate, 2004, 17, 682-698.	3.2	148
14	20–50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea. Climate Dynamics, 2010, 34, 747-761.	3.8	145
15	Weather and climate effects of the Tibetan Plateau. Advances in Atmospheric Sciences, 2012, 29, 978-992.	4.3	140
16	Changes in tropical cyclone precipitation over China. Geophysical Research Letters, 2006, 33, .	4.0	129
17	Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Climate Dynamics, 2012, 39, 1169-1181.	3.8	125
18	Time-lagged impact of spring sensible heat over the Tibetan Plateau on the summer rainfall anomaly in East China: case studies using the WRF model. Climate Dynamics, 2014, 42, 2885-2898.	3.8	120

#	Article	IF	CITATIONS
19	Land–atmosphere–ocean coupling associated with the Tibetan Plateau and its climate impacts. National Science Review, 2020, 7, 534-552.	9.5	119
20	Summertime quadruplet heating pattern in the subtropics and the associated atmospheric circulation. Geophysical Research Letters, 2003, 30, n/a-n/a.	4.0	116
21	Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Climate Dynamics, 2012, 39, 1183-1195.	3.8	116
22	CAS FGOALS-f3-L Model Datasets for CMIP6 Historical Atmospheric Model Intercomparison Project Simulation. Advances in Atmospheric Sciences, 2019, 36, 771-778.	4.3	109
23	Persistent Weakening Trend in the Spring Sensible Heat Source over the Tibetan Plateau and Its Impact on the Asian Summer Monsoon. Journal of Climate, 2011, 24, 5671-5682.	3.2	104
24	Genesis of the South Asian High and Its Impact on the Asian Summer Monsoon Onset. Journal of Climate, 2013, 26, 2976-2991.	3.2	100
25	Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer. Climate Dynamics, 2006, 27, 815-830.	3.8	94
26	Anomalous summer climate in China influenced by the tropical Indo-Pacific Oceans. Climate Dynamics, 2011, 36, 769-782.	3.8	86
27	Recent progress in the impact of the Tibetan Plateau on climate in China. Advances in Atmospheric Sciences, 2007, 24, 1060-1076.	4.3	83
28	Tower mast of precipitation over the central Tibetan Plateau summer. Geophysical Research Letters, 2006, 33, .	4.0	79
29	Global energy and water balance: Characteristics from <scp>F</scp> initeâ€volume <scp>A</scp> tmospheric <scp>M</scp> odel of the <scp>IAP/LASG</scp> (<scp>FAMIL</scp> 1). Journal of Advances in Modeling Earth Systems, 2015, 7, 1-20.	3.8	78
30	Two types of summertime heating over the Asian large-scale orography and excitation of potential-vorticity forcing I. Over Tibetan Plateau. Science China Earth Sciences, 2016, 59, 1996-2008.	5.2	76
31	Mechanism of the Spring Persistent Rains over southeastern China. Science in China Series D: Earth Sciences, 2007, 50, 130-144.	0.9	75
32	Reliability Analysis of Climate Change of Tropical Cyclone Activity over the Western North Pacific. Journal of Climate, 2011, 24, 5887-5898.	3.2	72
33	Location and variation of the summertime upper-troposphere temperature maximum over South Asia. Climate Dynamics, 2015, 45, 2757-2774.	3.8	70
34	An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Advances in Atmospheric Sciences, 2010, 27, 1131-1142.	4.3	64
35	Air–sea interaction and formation of the Asian summer monsoon onset vortex over the Bay of Bengal. Climate Dynamics, 2012, 38, 261-279.	3.8	64
36	Interannual variability of the spring atmospheric heat source over the Tibetan Plateau forced by the North Atlantic SSTA. Climate Dynamics, 2015, 45, 1617-1634.	3.8	64

#	Article	IF	CITATIONS
37	An assessment of summer sensible heat flux on the Tibetan Plateau from eight data sets. Science China Earth Sciences, 2012, 55, 779-786.	5.2	62
38	Understanding the surface temperature cold bias in CMIP5 AGCMs over the Tibetan Plateau. Advances in Atmospheric Sciences, 2017, 34, 1447-1460.	4.3	59
39	Interannual Variability of Late-spring Circulation and Diabatic Heating over the Tibetan Plateau Associated with Indian Ocean Forcing. Advances in Atmospheric Sciences, 2018, 35, 927-941.	4.3	54
40	Asian summer monsoon onset barrier and its formation mechanism. Climate Dynamics, 2015, 45, 711-726.	3.8	53
41	Roles of Anomalous Tibetan Plateau Warming on the Severe 2008 Winter Storm in Central-Southern China. Monthly Weather Review, 2010, 138, 2375-2384.	1.4	52
42	Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects. Advances in Atmospheric Sciences, 2017, 34, 1169-1184.	4.3	51
43	Heating status of the Tibetan Plateau from April to June and rainfall and atmospheric circulation anomaly over East Asia in midsummer. Science in China Series D: Earth Sciences, 2005, 48, 250-257.	0.9	49
44	Interannual variations of early summer monsoon rainfall over South China under different PDO backgrounds. International Journal of Climatology, 2011, 31, 847-862.	3.5	49
45	Evaluation of FAMIL2 in Simulating the Climatology and Seasonalâ€toâ€Interannual Variability of Tropical Cyclone Characteristics. Journal of Advances in Modeling Earth Systems, 2019, 11, 1117-1136.	3.8	49
46	Climate trends in tropical cyclone-induced wind and precipitation over mainland China. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	47
47	A case study of the impact of boreal summer intraseasonal oscillations on Yangtze rainfall. Climate Dynamics, 2015, 44, 2683-2702.	3.8	47
48	Outlook for El Niño and the Indian Ocean Dipole in autumn-winter 2018–2019. Chinese Science Bulletin, 2019, 64, 73-78.	0.7	46
49	Diurnal variations of summer precipitation over the Asian monsoon region as revealed by TRMM satellite data. Science China Earth Sciences, 2012, 55, 554-566.	5.2	41
50	Two types of summertime heating over Asian large-scale orography and excitation of potential-vorticity forcing II. Sensible heating over Tibetan-Iranian Plateau. Science China Earth Sciences, 2017, 60, 733-744.	5.2	41
51	Characteristics and Mechanism of the 10–20-Day Oscillation of Spring Rainfall over Southern China. Journal of Climate, 2013, 26, 5072-5087.	3.2	40
52	Influences of ENSO on the vertical coupling of atmospheric circulation during the onset of South Asian summer monsoon. Climate Dynamics, 2015, 45, 1859-1875.	3.8	38
53	Sensitivity of ITCZ configuration to cumulus convective parameterizations on an aqua planet. Climate Dynamics, 2010, 34, 223-240.	3.8	33
54	Vortex genesis over the Bay of Bengal in spring and its role in the onset of the Asian Summer Monsoon. Science China Earth Sciences, 2011, 54, 1-9.	5.2	33

#	Article	IF	CITATIONS
55	CAS FGOALS-f3-L Model Datasets for CMIP6 GMMIP Tier-1 and Tier-3 Experiments. Advances in Atmospheric Sciences, 2020, 37, 18-28.	4.3	32
56	Impact of North Atlantic SST and Tibetan Plateau forcing on seasonal transition of springtime South Asian monsoon circulation. Climate Dynamics, 2021, 56, 559-579.	3.8	32
57	Dynamical and thermal problems in vortex development and movement. Part I: A PV-Q view. Journal of Meteorological Research, 2013, 27, 1-14.	1.0	31
58	Astronomical and Hydrological Perspective of Mountain Impacts on the Asian Summer Monsoon. Scientific Reports, 2015, 5, 17586.	3.3	31
59	Global warming-induced Asian hydrological climate transition across the Miocene–Pliocene boundary. Nature Communications, 2021, 12, 6935.	12.8	31
60	The role of air–sea interactions in regulating the thermal effect of the Tibetan–Iranian Plateau on the Asian summer monsoon. Climate Dynamics, 2019, 52, 4227-4245.	3.8	30
61	Influence of the Tibetan Plateau on the summer climate patterns over Asia in the IAP/LASG SAMIL model. Advances in Atmospheric Sciences, 2008, 25, 518-528.	4.3	29
62	Intraseasonal modulation of tropical cyclogenesis in the western North Pacific: a case study. Theoretical and Applied Climatology, 2010, 100, 397-411.	2.8	29
63	Simulation of local airâ€sea interaction in the great warm pool and its influence on Asian monsoon. Journal of Geophysical Research, 2008, 113, .	3.3	27
64	PVâ€Q Perspective of Cyclogenesis and Vertical Velocity Development Downstream of the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD030912.	3.3	26
65	An empirical formula to compute snow cover fraction in GCMs. Advances in Atmospheric Sciences, 2004, 21, 529-535.	4.3	25
66	Influences of Typhoon Chanchu on the 2006 South China Sea summer monsoon onset. Geophysical Research Letters, 2008, 35, .	4.0	25
67	Influences of external forcing changes on the summer cooling trend over East Asia. Climatic Change, 2013, 117, 829-841.	3.6	25
68	Impacts of the Tibetan Plateau on Asian Climate. Meteorological Monographs, 2016, 56, 7.1-7.29.	5.0	25
69	An evaluation of cloud vertical structure in three reanalyses against CloudSat/cloudâ€aerosol lidar and infrared pathfinder satellite observations. Atmospheric Science Letters, 2019, 20, e906.	1.9	24
70	The role of land-sea distribution in the formation of the Asian summer monsoon. Geophysical Research Letters, 2005, 32, .	4.0	22
71	Mechanism for occurrence of precipitation over the southern slope of the Tibetan Plateau without local surface heating. International Journal of Climatology, 2016, 36, 4164-4171.	3.5	22
72	Tracking the delayed response of the northern winter stratosphere to ENSO using multi reanalyses and model simulations. Climate Dynamics, 2017, 48, 2859-2879.	3.8	22

#	Article	IF	CITATIONS
73	Sea ice loss of the Barents-Kara Sea enhances the winter warming over the Tibetan Plateau. Npj Climate and Atmospheric Science, 2022, 5, .	6.8	22
74	A Mass Budget Analysis on the Interannual Variability of the Polar Surface Pressure in the Winter Season. Journals of the Atmospheric Sciences, 2014, 71, 3539-3553.	1.7	21
75	Impacts of boundary layer parameterization schemes and air-sea coupling on WRF simulation of the East Asian summer monsoon. Science China Earth Sciences, 2014, 57, 1480-1493.	5.2	21
76	Impact of tropical cyclone development on the instability of South Asian High and the summer monsoon onset over Bay of Bengal. Climate Dynamics, 2013, 41, 2603-2616.	3.8	19
77	A dynamic and thermodynamic coupling view of the linkages between Eurasian cooling and Arctic warming. Climate Dynamics, 2022, 58, 2725-2744.	3.8	19
78	CAS FGOALS-f3-L model dataset descriptions for CMIP6 DECK experiments. Atmospheric and Oceanic Science Letters, 2020, 13, 582-588.	1.3	18
79	New evidences on the climatic causes of the formation of the spring persistent rains over southeastern China. Advances in Atmospheric Sciences, 2009, 26, 1081-1087.	4.3	17
80	Comparisons of soil moisture datasets over the Tibetan Plateau and application to the simulation of Asia summer monsoon onset. Advances in Atmospheric Sciences, 2010, 27, 303-314.	4.3	17
81	Largeâ€Scale Dynamics and Moisture Sources of the Precipitation Over the Western Tibetan Plateau in Boreal Winter. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032133.	3.3	17
82	Influence of land evapotranspiration on climate variations. Science in China Series D: Earth Sciences, 2001, 44, 838-846.	0.9	16
83	Cloud radiative forcing in Asian monsoon region simulated by IPCC AR4 AMIP models. Advances in Atmospheric Sciences, 2009, 26, 923-939.	4.3	16
84	Barotropic process contributing to the formation and growth of tropical cyclone Nargis. Advances in Atmospheric Sciences, 2011, 28, 483-491.	4.3	16
85	The effects of asymmetric potential vorticity forcing on the instability of South Asia High and Indian summer monsoon onset. Science China Earth Sciences, 2014, 57, 337-350.	5.2	15
86	CAS FGOALS-f3-H and CAS FGOALS-f3-L outputs for the high-resolution model intercomparison project simulation of CMIP6. Atmospheric and Oceanic Science Letters, 2020, 13, 576-581.	1.3	15
87	Abnormal warm seaâ€surface temperature in the Indian Ocean, active potential vorticity over the Tibetan Plateau, and severe flooding along the Yangtze River in summer 2020. Quarterly Journal of the Royal Meteorological Society, 2022, 148, 1001-1019.	2.7	15
88	Characteristics of the potential vorticity and its budget in the surface layer over the Tibetan plateau. International Journal of Climatology, 2021, 41, 439-455.	3.5	13
89	Features of rainfall and latent heating structure simulated by two convective parameterization schemes. Science China Earth Sciences, 2011, 54, 1779-1788.	5.2	12
90	The application of flux-form semi-Lagrangian transport scheme in a spectral atmosphere model. Advances in Atmospheric Sciences, 2013, 30, 89-100.	4.3	12

#	Article	IF	CITATIONS
91	Comparisons of GCM cloud cover parameterizations with cloud-resolving model explicit simulations. Science China Earth Sciences, 2015, 58, 604-614.	5.2	12
92	Response of the Indian Ocean to the Tibetan Plateau Thermal Forcing in Late Spring. Journal of Climate, 2019, 32, 6917-6938.	3.2	12
93	Impact of potential vorticity anomalies around the eastern Tibetan Plateau on quasi-biweekly oscillations of summer rainfall within and south of the Yangtze Basin in 2016. Climate Dynamics, 2021, 56, 813-835.	3.8	12
94	ADAPTATION OF THE ATMOSPHERIC CIRCULATION TO THERMAL FORCING OVER THE TIBETAN PLATEAU. World Scientific Series on Asia-Pacific Weather and Climate, 2004, , 92-114.	0.2	12
95	A study on sulfate optical properties and direct radiative forcing using LASC-IAP general circulation model. Advances in Atmospheric Sciences, 2012, 29, 1185-1199.	4.3	11
96	Roles of forced and inertially unstable convection development in the onset process of Indian summer monsoon. Science China Earth Sciences, 2014, 57, 1438-1451.	5.2	11
97	Impact of Surface Potential Vorticity Density Forcing over the Tibetan Plateau on the South China Extreme Precipitation in January 2008. Part I: Data Analysis. Journal of Meteorological Research, 2019, 33, 400-415.	2.4	11
98	Asymmetrical Response of the East Asian Summer Monsoon to the Quadrennial Oscillation of Global Sea Surface Temperature Associated With the Tibetan Plateau Thermal Feedback. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD032129.	3.3	11
99	Interdecadal variability in the tropical Indian Ocean and its dynamic explanation. Science Bulletin, 1999, 44, 1620-1627.	1.7	10
100	Winter season stratospheric circulation in the SAMIL/LASG general circulation model. Advances in Atmospheric Sciences, 2009, 26, 451-464.	4.3	10
101	Dynamical Seasonal Prediction of Tropical Cyclone Activity Using the FGOALS-f2 Ensemble Prediction System. Weather and Forecasting, 2021, 36, 1759-1778.	1.4	10
102	Dynamical and thermal problems in vortex development and movement. Part II: Generalized slantwise vorticity development. Journal of Meteorological Research, 2013, 27, 15-25.	1.0	9
103	Seasonal evolution of subtropical anticyclones in the climate system model FGOALS-s2. Advances in Atmospheric Sciences, 2013, 30, 593-606.	4.3	9
104	PV Perspective of Impacts on Downstream Extreme Rainfall Event of a Tibetan Plateau Vortex Collaborating with a Southwest China Vortex. Advances in Atmospheric Sciences, 2021, 38, 1835-1851.	4.3	9
105	Progress in research of stratosphere-troposphere interactions: Application of isentropic potential vorticity dynamics and the effects of the Tibetan Plateau. Journal of Meteorological Research, 2014, 28, 714-731.	2.4	8
106	Varying Rossby Wave Trains from the Developing to Decaying Period of the Upper Atmospheric Heat Source over the Tibetan Plateau in Boreal Summer. Advances in Atmospheric Sciences, 2018, 35, 1114-1128.	4.3	8
107	Onset of the Bay of Bengal summer monsoon and the seasonal timing of <scp>ENSO</scp> 's decay phase. International Journal of Climatology, 2017, 37, 4938-4948.	3.5	7
108	Impact of Surface Potential Vorticity Density Forcing over the Tibetan Plateau on the South China Extreme Precipitation in January 2008. Part II: Numerical Simulation. Journal of Meteorological Research, 2019, 33, 416-432.	2.4	7

#	Article	IF	CITATIONS
109	Land–air coupling over the Tibetan Plateau and its climate impacts. National Science Review, 2020, 7, 485-485.	9.5	7
110	A Regimeâ€Based Investigation Into the Errors of CMIP6 Simulated Cloud Radiative Effects Using Satellite Observations. Geophysical Research Letters, 2021, 48, e2021GL095399.	4.0	7
111	Potential vorticity perspective of the genesis of a Tibetan Plateau vortex in June 2016. Climate Dynamics, 2022, 58, 3351-3367.	3.8	7
112	Research on the dry intrusion accompanying the low vortex precipitation. Science in China Series D: Earth Sciences, 2007, 50, 1396-1408.	0.9	6
113	Earth System Model FGOALS-s2: Coupling a dynamic global vegetation and terrestrial carbon model with the physical climate system model. Advances in Atmospheric Sciences, 2013, 30, 1549-1559.	4.3	6
114	Interannual Influences of the Surface Potential Vorticity Forcing over the Tibetan Plateau on East Asian Summer Rainfall. Advances in Atmospheric Sciences, 2022, 39, 1050-1061.	4.3	6
115	Potential Impact of Spring Thermal Forcing Over the Tibetan Plateau on the Following Winter El Niño–Southern Oscillation. Geophysical Research Letters, 2022, 49, .	4.0	6
116	An evaluation of the effects of cloud parameterization in the R42L9 GCM. Advances in Atmospheric Sciences, 2004, 21, 153-162.	4.3	5
117	Potential vorticity structure and inversion of the cyclogenesis over the Yangtze River and Huaihe River valleys. Advances in Atmospheric Sciences, 2007, 24, 44-54.	4.3	5
118	Linkage between cross-equatorial potential vorticity flux and surface air temperature over the mid–high latitudes of Eurasia during boreal spring. Climate Dynamics, 2022, 59, 3247-3263.	3.8	5
119	The wavenumber-frequency characteristics of the tropical waves in an aqua-planet GCM. Advances in Atmospheric Sciences, 2008, 25, 541-554.	4.3	4
120	Local airâ€sea interaction in Intertropical Convergence Zone simulations. Journal of Geophysical Research, 2009, 114, .	3.3	4
121	Sensitivity of simulated tropical intraseasonal oscillations to cumulus schemes. Science China Earth Sciences, 2011, 54, 1761-1771.	5.2	4
122	CAS FGOALS-f3-L Large-ensemble Simulations for the CMIP6 Polar Amplification Model Intercomparison Project. Advances in Atmospheric Sciences, 2021, 38, 1028-1049.	4.3	4
123	Evaluation of the seasonality and spatial aspects of the Southern Annular Mode in <scp>CMIP6</scp> models. International Journal of Climatology, 2022, 42, 3820-3837.	3.5	4
124	Quantification of Seasonal and Interannual Variations of the Tibetan Plateau Surface Thermodynamic Forcing Based on the Potential Vorticity. Geophysical Research Letters, 2022, 49, .	4.0	4
125	Interannual Impact of the North Atlantic Tripole SST Mode on the Surface Potential Vorticity Over the Tibetan Plateau During Boreal Summer. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	4
126	FORMATION OF THE SUMMERTIME SUBTROPICAL ANTICYCLONES. World Scientific Series on Asia-Pacific Weather and Climate, 2004, , 499-544.	0.2	3

#	Article	IF	CITATIONS
127	Wave-mean flow interaction and its relationship with the atmospheric energy cycle with diabatic heating. Science in China Series D: Earth Sciences, 2005, 48, 1293-1302.	0.9	3
128	Comparisons of the temperature and humidity profiles of reanalysis products with shipboard GPS sounding measurements obtained during the 2018 Eastern Indian Ocean Open Cruise. Atmospheric and Oceanic Science Letters, 2019, 12, 177-183.	1.3	3
129	The climate variability in global land precipitation in FGOALS-f3-L: A comparison between GMMIP and historical simulations. Atmospheric and Oceanic Science Letters, 2020, 13, 559-567.	1.3	3
130	Analysis on observing optimization for the wind-driven circulation by an adjoint approach. Science in China Series D: Earth Sciences, 2000, 43, 243-252.	0.9	2
131	Atmospheric angular momentum transport and balance in the AGCM-SAMIL. Advances in Atmospheric Sciences, 2010, 27, 1183-1192.	4.3	2
132	Modulation of land-sea thermal contrast on the energy source and sink of tropical cyclone activity and its annual cycle. Science China Earth Sciences, 2012, 55, 1855-1871.	5.2	2
133	Decadal variations in the season advancement of spring water cycle over Eastern China. Science China Earth Sciences, 2012, 55, 1358-1370.	5.2	2
134	Performance of FGOALS-s2 in simulating intraseasonal oscillation over the south Asian monsoon region. Advances in Atmospheric Sciences, 2013, 30, 607-620.	4.3	2
135	An updated coupled model for land-atmosphere interaction. Part I: Simulations of physical processes. Advances in Atmospheric Sciences, 2008, 25, 619-631.	4.3	1
136	An updated coupled model for land-atmosphere interaction. Part II: Simulations of biological processes. Advances in Atmospheric Sciences, 2008, 25, 632-640.	4.3	1
137	Opposite responses of the Indian Ocean to the thermal forcing of the Tibetan Plateau before and after the onset of the South Asian monsoon. Journal of Climate, 2021, , 1-56.	3.2	1
138	Meridional Tripole Mode of Winter Precipitation over the Arctic and Continental North Africa–Eurasia. Journal of Climate, 2021, , 1.	3.2	1
139	THERMAL-DYNAMICAL EFFECTS OF THE TIBETAN PLATEAU ON THE EAST ASIAN MONSOON. Monsoon Asia Integrated Regional Study on Global Change, 2008, , 9-22.	0.0	1
140	The Behavior of Moist Potential Vorticity in the Interactions of Binary Typhoons Lekima and Krosa (2019) in with Different High-Resolution Simulations. Atmosphere, 2022, 13, 281.	2.3	1
141	Optimal Meridional Positions of the Tibetan Plateau for Intensifying the Asian Summer Monsoon. Journal of Climate, 2022, , 1-39.	3.2	1
142	The Nature of the Thermal Forcing of the Asian Summer Monsoon. World Scientific Series on Asia-Pacific Weather and Climate, 2021, , 27-36.	0.2	0