Weiwei Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3275587/publications.pdf

Version: 2024-02-01

186265 330143 6,607 36 28 37 citations h-index g-index papers 37 37 37 7391 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thin-Film Preparation and Characterization of Cs ₃ Sb ₂ I ₉ : A Lead-Free Layered Perovskite Semiconductor. Chemistry of Materials, 2015, 27, 5622-5632.	6.7	653
2	Leadâ€Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%. Advanced Materials, 2016, 28, 9333-9340.	21.0	636
3	Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Materials Horizons, 2017, 4, 206-216.	12.2	553
4	Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells. Advanced Materials, 2016, 28, 5214-5221.	21.0	487
5	Parity-Forbidden Transitions and Their Impact on the Optical Absorption Properties of Lead-Free Metal Halide Perovskites and Double Perovskites. Journal of Physical Chemistry Letters, 2017, 8, 2999-3007.	4.6	441
6	Bandgap Engineering of Leadâ€Free Double Perovskite Cs ₂ AgBiBr ₆ through Trivalent Metal Alloying. Angewandte Chemie - International Edition, 2017, 56, 8158-8162.	13.8	425
7	Lead-Free Direct Band Gap Double-Perovskite Nanocrystals with Bright Dual-Color Emission. Journal of the American Chemical Society, 2018, 140, 17001-17006.	13.7	399
8	Thin-Film Deposition and Characterization of a Sn-Deficient Perovskite Derivative Cs ₂ Snl ₆ . Chemistry of Materials, 2016, 28, 2315-2322.	6.7	329
9	Thermodynamic Stability and Defect Chemistry of Bismuthâ€Based Leadâ€Free Double Perovskites. ChemSusChem, 2016, 9, 2628-2633.	6.8	273
10	Intrinsic Instability of $Cs < sub > 2 < / sub > In(I)M(III)X < sub > 6 < / sub > (M = Bi, Sb; X = Halogen) Double Perovskites: A Combined Density Functional Theory and Experimental Study. Journal of the American Chemical Society, 2017, 139, 6054-6057.$	13.7	253
11	Effects of organic cations on the defect physics of tin halide perovskites. Journal of Materials Chemistry A, 2017, 5, 15124-15129.	10.3	213
12	A layered Na _{1â^'x} Ni _y Fe _{1â^'y} O ₂ double oxide oxygen evolution reaction electrocatalyst for highly efficient water-splitting. Energy and Environmental Science, 2017, 10, 121-128.	30.8	201
13	Synergistic Effects of Lead Thiocyanate Additive and Solvent Annealing on the Performance of Wide-Bandgap Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 1177-1182.	17.4	190
14	Atomistic Mechanism of Broadband Emission in Metal Halide Perovskites. Journal of Physical Chemistry Letters, 2019, 10, 501-506.	4.6	190
15	Alloying and Defect Control within Chalcogenide Perovskites for Optimized Photovoltaic Application. Chemistry of Materials, 2016, 28, 821-829.	6.7	175
16	Metal–Organic Framework-Derived CoWP@C Composite Nanowire Electrocatalyst for Efficient Water Splitting. ACS Energy Letters, 2018, 3, 1434-1442.	17.4	141
17	Photovoltaic Properties of Two-Dimensional (CH ₃ NH ₃) ₂ Pb(SCN) ₂ I ₂ Perovskite: A Combined Experimental and Density Functional Theory Study. Journal of Physical Chemistry Letters, 2016, 7, 1213-1218.	4.6	135
18	Thermally evaporated methylammonium tin triiodide thin films for lead-free perovskite solar cell fabrication. RSC Advances, 2016, 6, 90248-90254.	3.6	114

#	Article	IF	Citations
19	Trigonal Cu $<$ sub $>$ 2 $<$ /sub $>$ -II-Sn-VI $<$ sub $>$ 4 $<$ /sub $>$ (II = Ba, Sr and VI = S, Se) quaternary compounds for earth-abundant photovoltaics. Physical Chemistry Chemical Physics, 2016, 18, 4828-4834.	2.8	94
20	Chemical Origin of the Stability Difference between Copper(I)―and Silver(I)â€Based Halide Double Perovskites. Angewandte Chemie - International Edition, 2017, 56, 12107-12111.	13.8	89
21	Chemical Origin of the Stability Difference between Copper(I)―and Silver(I)â€Based Halide Double Perovskites. Angewandte Chemie, 2017, 129, 12275-12279.	2.0	79
22	Viability of Lead-Free Perovskites with Mixed Chalcogen and Halogen Anions for Photovoltaic Applications. Journal of Physical Chemistry C, 2016, 120, 6435-6441.	3.1	72
23	Distant-Atom Mutation for Better Earth-Abundant Light Absorbers: A Case Study of Cu ₂ BaSnSe ₄ . ACS Energy Letters, 2017, 2, 29-35.	17.4	68
24	Bandgap Engineering of Barium Bismuth Niobate Double Perovskite for Photoelectrochemical Water Oxidation. Advanced Energy Materials, 2017, 7, 1602260.	19.5	67
25	Crystal Structure of AgBi ₂ 1 ₇ Thin Films. Journal of Physical Chemistry Letters, 2016, 7, 3903-3907.	4.6	64
26	Employing Overlayers To Improve the Performance of Cu ₂ BaSnS ₄ Thin Film based Photoelectrochemical Water Reduction Devices. Chemistry of Materials, 2017, 29, 916-920.	6.7	61
27	Bandgap Engineering of Leadâ€Free Double Perovskite Cs 2 AgBiBr 6 through Trivalent Metal Alloying. Angewandte Chemie, 2017, 129, 8270-8274.	2.0	40
28	Cost-effective hole transporting material for stable and efficient perovskite solar cells with fill factors up to 82%. Journal of Materials Chemistry A, 2017, 5, 23319-23327.	10.3	40
29	Atomistic Insight into the Redox Reactions in Fe/Oxide Core–Shell Nanoparticles. Chemistry of Materials, 2018, 30, 7306-7312.	6.7	28
30	Room-temperature oxygen vacancy migration induced reversible phase transformation during the anelastic deformation in CuO. Nature Communications, 2021, 12, 3863.	12.8	26
31	Electronic band structures and excitonic properties of delafossites: A GW-BSE study. Journal of Applied Physics, 2017, 122, 085104.	2.5	22
32	Surface- and Strain-Mediated Reversible Phase Transformation in Quantum-Confined ZnO Nanowires. Physical Review Letters, 2019, 123, 216101.	7.8	19
33	Stability, Electronic and Optical Properties of M $<$ sub $>4sub>Mâ\in2X<sub>4sub> (M = Ga or In, Mâ\in2 = Si,) Tj 10360-10364.$	ETQq1 1 (3.1).784314 rgE 7
34	Irradiation and Size Effects on Redox Reaction Mechanisms in Iron Oxides. Chemistry of Materials, 2021, 33, 1860-1866.	6.7	7
35	Probing the Crystal and Electronic Structures of Molybdenum Oxide in Redox Process: Implications for Energy Applications. ACS Applied Energy Materials, 2019, 2, 7709-7716.	5.1	6
36	Atomistic insight into ordered defect superstructures at novel grain boundaries in CuO nanosheets: From structures to electronic properties. Nano Research, 2019, 12, 1099-1104.	10.4	6

3