Gregory Basarab

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/327542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Probing the Requirements for Dual Angiotensin-Converting Enzyme C-Domain Selective/Neprilysin Inhibition. Journal of Medicinal Chemistry, 2022, 65, 3371-3387.	6.4	3
2	Spiropyrimidinetriones: a Class of DNA Gyrase Inhibitors with Activity against Mycobacterium tuberculosis and without Cross-Resistance to Fluoroquinolones. Antimicrobial Agents and Chemotherapy, 2022, 66, e0219221.	3.2	13
3	Spiropyrimidinetrione DNA Gyrase Inhibitors with Potent and Selective Antituberculosis Activity. Journal of Medicinal Chemistry, 2022, 65, 6903-6925.	6.4	16
4	Multistage and transmission-blocking targeted antimalarials discovered from the open-source MMV Pandemic Response Box. Nature Communications, 2021, 12, 269.	12.8	61
5	Antitubercular 2-Pyrazolylpyrimidinones: Structure–Activity Relationship and Mode-of-Action Studies. Journal of Medicinal Chemistry, 2021, 64, 719-740.	6.4	9
6	Identification and Profiling of a Novel Diazaspiro[3.4]octane Chemical Series Active against Multiple Stages of the Human Malaria Parasite <i>Plasmodium falciparum</i> and Optimization Efforts. Journal of Medicinal Chemistry, 2021, 64, 2291-2309.	6.4	11
7	1,3-Diarylpyrazolyl-acylsulfonamides as Potent Anti-tuberculosis Agents Targeting Cell Wall Biosynthesis in <i>Mycobacterium tuberculosis</i> . Journal of Medicinal Chemistry, 2021, 64, 12790-12807.	6.4	13
8	Identification of 2,4-Disubstituted Imidazopyridines as Hemozoin Formation Inhibitors with Fast-Killing Kinetics and <i>In Vivo</i> Efficacy in the <i>Plasmodium falciparum</i> NSG Mouse Model. Journal of Medicinal Chemistry, 2020, 63, 13013-13030.	6.4	11
9	Structural Basis for Inhibitor Potency and Selectivity of <i>Plasmodium falciparum</i> Phosphatidylinositol 4-Kinase Inhibitors. ACS Infectious Diseases, 2020, 6, 3048-3063.	3.8	14
10	Antibacterial Spiropyrimidinetriones with N-Linked Azole Substituents on a Benzisoxazole Scaffold Targeting DNA Gyrase. Journal of Medicinal Chemistry, 2020, 63, 11882-11901.	6.4	11
11	Antimalarial Lead-Optimization Studies on a 2,6-Imidazopyridine Series within a Constrained Chemical Space To Circumvent Atypical Dose–Response Curves against Multidrug Resistant Parasite Strains. Journal of Medicinal Chemistry, 2018, 61, 9371-9385.	6.4	9
12	Investigating Sulfoxide-to-Sulfone Conversion as a Prodrug Strategy for a Phosphatidylinositol 4-Kinase Inhibitor in a Humanized Mouse Model of Malaria. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	5
13	Plasmodial Kinase Inhibitors: License to Cure?. Journal of Medicinal Chemistry, 2018, 61, 8061-8077.	6.4	49
14	UCT943, a Next-Generation Plasmodium falciparum PI4K Inhibitor Preclinical Candidate for the Treatment of Malaria. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	40
15	Discovery of dual GyrB/ParE inhibitors active against Gram-negative bacteria. European Journal of Medicinal Chemistry, 2018, 157, 610-621.	5.5	10
16	ldentification, Characterization, and Optimization of 2,8-Disubstituted-1,5-naphthyridines as Novel <i>Plasmodium falciparum</i> Phosphatidylinositol-4-kinase Inhibitors with in Vivo Efficacy in a Humanized Mouse Model of Malaria. Journal of Medicinal Chemistry, 2018, 61, 5692-5703.	6.4	40
17	Absorption, distribution, metabolism and elimination of 14C-ETX0914, a novel inhibitor of bacterial type-II topoisomerases in rodents. Xenobiotica, 2017, 47, 31-49.	1.1	6
18	Four Ways to Skin a Cat: Inhibition of Bacterial Topoisomerases Leading to the Clinic. Topics in Medicinal Chemistry, 2017, , 165-188.	0.8	1

GREGORY BASARAB

#	Article	IF	CITATIONS
19	Development and design of the tertiary amino effect reaction for DNA-encoded library synthesis. MedChemComm, 2016, 7, 1316-1322.	3.4	26
20	Expedient synthesis of tetrahydroquinoline-3-spirohydantoin derivatives via the Lewis acid-catalyzed tert-amino effect reaction. Chemical Communications, 2016, 52, 8541-8544.	4.1	27
21	Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases. Scientific Reports, 2015, 5, 11827.	3.3	85
22	<i>In vitro</i> and <i>in vivo</i> metabolism of ¹⁴ C-AZ11, a novel inhibitor of bacterial DNA gyrase/type II topoisomerase. Xenobiotica, 2015, 45, 158-170.	1.1	3
23	Design of Antibacterial Agents. , 2015, , 611-626.		0
24	Inhibition of Neisseria gonorrhoeae Type II Topoisomerases by the Novel Spiropyrimidinetrione AZD0914. Journal of Biological Chemistry, 2015, 290, 20984-20994.	3.4	34
25	Discovery of Novel DNA Gyrase Inhibiting Spiropyrimidinetriones: Benzisoxazole Fusion with N-Linked Oxazolidinone Substituents Leading to a Clinical Candidate (ETX0914). Journal of Medicinal Chemistry, 2015, 58, 6264-6282.	6.4	60
26	Structural Insights Lead to a Negamycin Analogue with Improved Antimicrobial Activity against Gram-Negative Pathogens. ACS Medicinal Chemistry Letters, 2015, 6, 930-935.	2.8	10
27	<i>In Vitro</i> Antibacterial Activity of AZD0914, a New Spiropyrimidinetrione DNA Gyrase/Topoisomerase Inhibitor with Potent Activity against Gram-Positive, Fastidious Gram-Negative, and Atypical Bacteria. Antimicrobial Agents and Chemotherapy, 2015, 59, 467-474.	3.2	67
28	Illicit Transport via Dipeptide Transporter Dpp is Irrelevant to the Efficacy of Negamycin in Mouse Thigh Models ofEscherichia coliInfection. ACS Infectious Diseases, 2015, 1, 222-230.	3.8	9
29	Synthesis of a Tetrahydronaphthyridine Spiropyrimidinetrione DNA Gyrase Inhibiting Antibacterial Agent - Differential Substitution at all Five Carbon Atoms of Pyridine Organic Letters, 2014, 16, 6456-6459.	4.6	25
30	Negamycin induces translational stalling and miscoding by binding to the small subunit head domain of the <i>Escherichia coli</i> ribosome. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16274-16279.	7.1	36
31	Novel DNA Gyrase Inhibiting Spiropyrimidinetriones with a Benzisoxazole Scaffold: SAR and in Vivo Characterization. Journal of Medicinal Chemistry, 2014, 57, 9078-9095.	6.4	44
32	Optimization of Pyrrolamide Topoisomerase II Inhibitors Toward Identification of an Antibacterial Clinical Candidate (AZD5099). Journal of Medicinal Chemistry, 2014, 57, 6060-6082.	6.4	57
33	Fragment-to-Hit-to-Lead Discovery of a Novel Pyridylurea Scaffold of ATP Competitive Dual Targeting Type II Topoisomerase Inhibiting Antibacterial Agents. Journal of Medicinal Chemistry, 2013, 56, 8712-8735.	6.4	75
34	Design of inhibitors of Helicobacter pylori glutamate racemase as selective antibacterial agents: Incorporation of imidazoles onto a core pyrazolopyrimidinedione scaffold to improve bioavailabilty. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 5600-5607.	2.2	14
35	Pyrrolamide DNA gyrase inhibitors: Optimization of antibacterial activity and efficacy. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 7416-7420.	2.2	109
36	Potent and selective inhibitors of Helicobacter pylori glutamate racemase (Murl): Pyridodiazepine amines. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 930-936.	2.2	41

GREGORY BASARAB

#	Article	IF	CITATIONS
37	Design of Helicobacter pylori glutamate racemase inhibitors as selective antibacterial agents: A novel pro-drug approach to increase exposure. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4716-4722.	2.2	31
38	Roles of Substrate Distortion and Intramolecular Hydrogen Bonding in Enzymatic Catalysis by Scytalone Dehydratase. Biochemistry, 2002, 41, 820-826.	2.5	16
39	Design of Inhibitors of Scytalone Dehydratase: Probing Interactions with an Asparagine Carboxamide. Bioorganic and Medicinal Chemistry, 2002, 10, 4143-4154.	3.0	13
40	Structure-based design of inhibitors of the rice blast fungal enzyme trihydroxynaphthalene reductase. Journal of Molecular Graphics and Modelling, 2001, 19, 434-447.	2.4	37
41	Structures of Trihydroxynaphthalene Reductase-Fungicide Complexes. Structure, 2001, 9, 19-27.	3.3	42
42	Selection of a potent inhibitor of trihydroxynaphthalene reductase by sorting disease control data. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 491-494.	2.2	12
43	Binding dynamics of two water molecules constrained within the scytalone dehydratase binding pocket. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 23-26.	2.2	10
44	Cyclobutane carboxamide inhibitors of fungal melanin: biosynthesis and their evaluation as fungicides. Bioorganic and Medicinal Chemistry, 2000, 8, 897-907.	3.0	38
45	Stereochemistry of the Enolization of Scytalone by Scytalone Dehydratase. Biochemistry, 2000, 39, 2276-2282.	2.5	25
46	Solvolytic Enolization of Scytalone. Organic Letters, 2000, 2, 1541-1544.	4.6	6
47	Tight Binding Inhibitors of Scytalone Dehydratase:Â Effects of Site-Directed Mutations. Biochemistry, 2000, 39, 8593-8602.	2.5	19
48	Design of scytalone dehydratase inhibitors as rice blast fungicides: (N-phenoxypropyl)-carboxamides. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1607-1612.	2.2	32
49	Design of scytalone dehydratase inhibitors as rice blast fungicides: Derivatives of norephedrine. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 1613-1618.	2.2	34
50	Catalytic mechanism of scytalone dehydratase fromMagnaporthe grisea. Pest Management Science, 1999, 55, 277-280.	0.4	10
51	High-resolution structures of scytalone dehydratase-inhibitor complexes crystallized at physiological pH. , 1999, 35, 425-439.		35
52	Catalytic Mechanism of Scytalone Dehydratase:Â Site-Directed Mutagenisis, Kinetic Isotope Effects, and Alternate Substrates. Biochemistry, 1999, 38, 6012-6024.	2.5	43
53	Wild-Type Enzyme as a Reporter of Inhibitor Binding by Catalytically Impaired Mutant Enzymes. Biochemical and Biophysical Research Communications, 1999, 263, 617-620.	2.1	4
54	2,3-Dihydro-2,5-dihydroxy-4H-benzopyran-4-one: A Nonphysiological Substrate for Fungal Melanin Biosynthetic Enzymes. Analytical Biochemistry, 1998, 256, 1-6.	2.4	22

GREGORY BASARAB

#	Article	IF	CITATIONS
55	Structure-Based Design of Potent Inhibitors of Scytalone Dehydratase:Â Displacement of a Water Molecule from the Active Site‡. Biochemistry, 1998, 37, 17735-17744.	2.5	131
56	Synthesis of Agrochemicals and Agricultural Biotechnology Entering the 21st Century. ACS Symposium Series, 1998, , 1-5.	0.5	1
57	Trihydroxynaphthalene Reductase fromMagnaporthegrisea:Â Realization of an Active Center Inhibitor and Elucidation of the Kinetic Mechanism. Biochemistry, 1997, 36, 1852-1860.	2.5	47
58	Crystal structure of scytalone dehydratase — a disease determinant of the rice pathogen, Magnaporthe grisea. Structure, 1994, 2, 937-944.	3.3	143
59	The chemistry and biological activity of a new class of azole fungicides: 1-amino-1,2,4-triazoles. Pest Management Science, 1991, 31, 403-417.	0.4	9
60	Biologically Active Organosilicon Compounds. ACS Symposium Series, 1987, , 288-301.	0.5	21