Cristina Costa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3275303/publications.pdf

Version: 2024-02-01

40 papers

1,598 citations

411340 20 h-index 388640 36 g-index

40 all docs

40 docs citations

40 times ranked

1952 citing authors

#	Article	IF	CITATIONS
1	The role of antibody responses against glycans in bioprosthetic heart valve calcification and deterioration. Nature Medicine, 2022, 28, 283-294.	15.2	40
2	Specificity profile of αGal antibodies in αGalT KO mice as probed with comprehensive printed glycan array: Comparison with human antiâ€Galili antibodies. Xenotransplantation, 2021, 28, e12672.	1.6	2
3	Characterization of putative regulatory isoforms of porcine tumor necrosis factor receptor 2 in endothelial cells. Xenotransplantation, 2020, 27, e12635.	1.6	3
4	Determination of Redox Status in Serum. Methods in Molecular Biology, 2020, 2110, 115-128.	0.4	1
5	Rat Model of Intra-articular Chondrocyte Xenotransplantation. Methods in Molecular Biology, 2020, 2110, 253-266.	0.4	O
6	Cell-Based Assays for Modeling Xenogeneic Immune Responses. Methods in Molecular Biology, 2020, 2110, 99-113.	0.4	1
7	Tools for Molecular Studies in Xenotransplantation. Methods in Molecular Biology, 2020, 2110, 27-45.	0.4	O
8	Elicited and preâ€existing antiâ€Neu5Gc antibodies differentially affect human endothelial cells transcriptome. Xenotransplantation, 2019, 26, e12535.	1.6	12
9	Generation of cattle knockout for galactoseâ€Î±1,3â€galactose and Nâ€glycolylneuraminic acid antigens. Xenotransplantation, 2019, 26, e12524.	1.6	30
10	The Formation of Glycan-Specific Natural Antibodies Repertoire in GalT-KO Mice Is Determined by Gut Microbiota. Frontiers in Immunology, 2019, 10, 342.	2.2	31
11	Presentation Mode of Glycans Affect Recognition of Human Serum anti-Neu5Gc IgG Antibodies. Bioconjugate Chemistry, 2019, 30, 161-168.	1.8	19
12	Cytokine profile associated with selective removal of natural anti-αGal antibodies in a sepsis model in Gal-KO mice. Biochemistry (Moscow), 2017, 82, 205-212.	0.7	4
13	Biodistribution and Immunogenicity of Allogeneic Mesenchymal Stem Cells in a Rat Model of Intraarticular Chondrocyte Xenotransplantation. Frontiers in Immunology, 2017, 8, 1465.	2.2	12
14	Characterization of immunogenic Neu5Gc in bioprosthetic heart valves. Xenotransplantation, 2016, 23, 381-392.	1.6	63
15	Divergence of the Response Induced by Xenogenic Immunization in the Sepsis Survival of Rats. PLoS ONE, 2015, 10, e0125472.	1.1	2
16	The pig as an animal model for human pathologies: A proteomics perspective. Proteomics - Clinical Applications, 2014, 8, 715-731.	0.8	213
17	Boosted Rat Natural Xenoantibodies Cross-React withEnterococcus faecalisby Targeting Melibiose and L-Rhamnose. Journal of Innate Immunity, 2014, 6, 140-151.	1.8	2
18	Multiple Receptors Trigger Human NK Cell-Mediated Cytotoxicity against Porcine Chondrocytes. Journal of Immunology, 2012, 188, 2075-2083.	0.4	17

#	Article	IF	CITATIONS
19	Cellular Studies for In Vitro Modeling of Xenogeneic Immune Responses. Methods in Molecular Biology, 2012, 885, 91-103.	0.4	1
20	Basic Analyses of Proteins of Interest for Xenotransplantation. Methods in Molecular Biology, 2012, 885, 33-45.	0.4	1
21	Cloning and Expression Analyses of Pig Genes. Methods in Molecular Biology, 2012, 885, 17-31.	0.4	1
22	Identification of soluble and membraneâ€bound isoforms of porcine tumor necrosis factor receptor 2. Xenotransplantation, 2011, 18, 131-146.	1.6	8
23	TNF, Pig CD86, and VCAM-1 Identified as Potential Targets for Intervention in Xenotransplantation of Pig Chondrocytes. Cell Transplantation, 2009, 18, 1381-1393.	1.2	21
24	Role of complement component C5 in cerebral ischemia/reperfusion injury. Brain Research, 2006, 1100, 142-151.	1.1	46
25	CD86 Blockade in Genetically Modified Porcine Cells Delays Xenograft Rejection by Inhibiting T-Cell and NK-Cell Activation. Cell Transplantation, 2004, 13, 75-87.	1.2	13
26	Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease. Journal of Clinical Investigation, 2004, 113, 1149-1157.	3.9	142
27	Delayed rejection of porcine cartilage is averted by transgenic expression of α1,2â€fucosyltransferase. FASEB Journal, 2003, 17, 109-111.	0.2	33
28	Production of $\hat{l}\pm 1,3$ -Galactosyltransferase-Knockout Cloned Pigs Expressing Human $\hat{l}\pm 1,2$ -Fucosylosyltransferase1. Biology of Reproduction, 2003, 69, 437-445.	1.2	151
29	Human NK Cell-Mediated Cytotoxicity Triggered by CD86 and $Gall \pm 1,3$ -Gal Is Inhibited in Genetically Modified Porcine Cells. Journal of Immunology, 2002, 168, 3808-3816.	0.4	33
30	Transgenic pigs designed to express human CD59 and H-transferase to avoid humoral xenograft rejection. Xenotransplantation, 2002, 9, 45-57.	1.6	54
31	\hat{l}^2 cell expression of IGF-I leads to recovery from type 1 diabetes. Journal of Clinical Investigation, 2002, 109, 1153-1163.	3.9	110
32	\hat{l}^2 cell expression of IGF-I leads to recovery from type 1 diabetes. Journal of Clinical Investigation, 2002, 109, 1153-1163.	3.9	74
33	Cloned pigs generated from cultured skin fibroblasts derived from a H-transferase transgenic boar. Molecular Reproduction and Development, 2001, 60, 189-195.	1.0	99
34	Significant Role for Fas in the Pathogenesis of Autoimmune Diabetes. Journal of Immunology, 2000, 164, 2523-2532.	0.4	97
35	Expression of the human î±:1,2â€fucosyltransferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serumâ€mediated cytolysis. FASEB Journal, 1999, 13, 1762-1773.	0.2	85
36	Comparative analysis of three genetic modifications designed to inhibit human serumâ€mediated cytolysis. Xenotransplantation, 1999, 6, 6-16.	1.6	20

#	Article	IF	CITATION
37	Evidence from Transgenic Mice That Interferon-β May Be Involved in the Onset of Diabetes Mellitus. Journal of Biological Chemistry, 1998, 273, 12332-12340.	1.6	42
38	Transgenic rabbits overexpressing growth hormone develop acromegaly and diabetes mellitus. FASEB Journal, 1998, 12, 1455-1460.	0.2	40
39	Regulated expression of human insulin in the liver of transgenic mice corrects diabetic alterations. FASEB Journal, 1994, 8, 440-447.	0.2	75
40	Removal of AntiGalactosyl Antibodies Elicits Protective Immunity Against Gram-Negative Bacterial Infections. SSRN Electronic Journal, 0, , .	0.4	0