
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3275231/publications.pdf Version: 2024-02-01

Ошис 7нц

#	Article	IF	CITATIONS
1	A real-time photoacoustic tomography system for small animals. Optics Express, 2009, 17, 10489.	3.4	212
2	Benign versus Malignant Breast Masses: Optical Differentiation with US-guided Optical Imaging Reconstruction. Radiology, 2005, 237, 57-66.	7.3	189
3	Adhesion of Human Osteoblasts on Root-End Filling Materials. Journal of Endodontics, 2000, 26, 404-406.	3.1	175
4	Imaging tumor angiogenesis by use of combined near-infrared diffusive light and ultrasound. Optics Letters, 2003, 28, 337.	3.3	158
5	Utilizing Optical Tomography with Ultrasound Localization to Image Heterogeneous Hemoglobin Distribution in Large Breast Cancers. Neoplasia, 2005, 7, 263-270.	5.3	155
6	Ultrasound-Guided Optical Tomographic Imaging of Malignant and Benign Breast Lesions: Initial Clinical Results of 19 Cases. Neoplasia, 2003, 5, 379-388.	5.3	144
7	Emission and absorption properties of indocyanine green in Intralipid solution. Journal of Biomedical Optics, 2004, 9, 497.	2.6	117
8	Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization. Biomedical Optics Express, 2011, 2, 2551.	2.9	99
9	Early-Stage Invasive Breast Cancers: Potential Role of Optical Tomography with US Localization in Assisting Diagnosis. Radiology, 2010, 256, 367-378.	7.3	96
10	Imager that combines near-infrared diffusive light and ultrasound. Optics Letters, 1999, 24, 1050.	3.3	91
11	Optical scattering coefficient estimated by optical coherence tomography correlates with collagen content in ovarian tissue. Journal of Biomedical Optics, 2011, 16, 090504.	2.6	91
12	Photoacoustic imaging with low-cost sources; A review. Photoacoustics, 2019, 14, 1-11.	7.8	90
13	Simultaneous near-infrared diffusive light and ultrasound imaging. Applied Optics, 2001, 40, 6367.	2.1	84
14	Noninvasive Monitoring of Breast Cancer during Neoadjuvant Chemotherapy Using Optical Tomography with Ultrasound Localization. Neoplasia, 2008, 10, 1028-1040.	5.3	83
15	Breast Cancer: Assessing Response to Neoadjuvant Chemotherapy by Using US-guided Near-Infrared Tomography. Radiology, 2013, 266, 433-442.	7.3	78
16	A low-cost photoacoustic microscopy system with a laser diode excitation. Biomedical Optics Express, 2014, 5, 3053.	2.9	71
17	Potential Role of Coregistered Photoacoustic and Ultrasound Imaging in Ovarian Cancer Detection and Characterization. Translational Oncology, 2011, 4, 29-37.	3.7	68
18	Coregistered three-dimensional ultrasound and photoacoustic imaging system for ovarian tissue characterization. Journal of Biomedical Optics, 2009, 14, 054014.	2.6	63

QUING ZHU

#	Article	IF	CITATIONS
19	Calreticulin-Integrin Bidirectional Signaling Complex. Biochemical and Biophysical Research Communications, 1997, 232, 354-358.	2.1	61
20	Evaluation of Ovarian Cancer: Initial Application of Coregistered Photoacoustic Tomography and US. Radiology, 2018, 289, 740-747.	7.3	60
21	Ultrasound-Guided Diffuse Optical Tomography for Predicting and Monitoring Neoadjuvant Chemotherapy of Breast Cancers. Ultrasonic Imaging, 2016, 38, 5-18.	2.6	53
22	Feasibility of co-registered ultrasound and acoustic-resolution photoacoustic imaging of human colorectal cancer. Biomedical Optics Express, 2018, 9, 5159.	2.9	53
23	FPGA-based reconfigurable processor for ultrafast interlaced ultrasound and photoacoustic imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 1344-1353.	3.0	50
24	Laser scanning laser diode photoacoustic microscopy system. Photoacoustics, 2018, 9, 1-9.	7.8	50
25	Assessment of Functional Differences in Malignant and Benign Breast Lesions and Improvement of Diagnostic Accuracy by Using US-guided Diffuse Optical Tomography in Conjunction with Conventional US. Radiology, 2016, 280, 387-397.	7.3	49
26	Portable near-infrared diffusive light imager for breast cancer detection. Journal of Biomedical Optics, 2004, 9, 504.	2.6	46
27	Coregistered photoacoustic and ultrasound imaging and classification of ovarian cancer: <i>ex vivo</i> and <i>in vivo</i> studies. Journal of Biomedical Optics, 2016, 21, 046006.	2.6	46
28	Compact ultrasound-guided diffuse optical tomography system for breast cancer imaging. Journal of Biomedical Optics, 2018, 24, 1.	2.6	46
29	Dual-mesh optical tomography reconstruction method with a depth correction that uses a prioriultrasound information. Applied Optics, 2004, 43, 1654.	2.1	45
30	Modeling of Noninvasive Microwave Characterization of Breast Tumors. IEEE Transactions on Biomedical Engineering, 2004, 51, 1089-1094.	4.2	42
31	Optimal Probing of Optical Contrast of Breast Lesions of Different Size Located at Different Depths by US Localization. Technology in Cancer Research and Treatment, 2006, 5, 365-380.	1.9	41
32	Coâ€registered pulseâ€echo/photoacoustic transvaginal probe for real time imaging of ovarian tissue. Journal of Biophotonics, 2013, 6, 475-484.	2.3	39
33	Rotary mirror array for high-speed optical coherence tomography. Optics Letters, 2002, 27, 607.	3.3	38
34	Characterizing optical properties and spatial heterogeneity of human ovarian tissue using spatial frequency domain imaging. Journal of Biomedical Optics, 2016, 21, 101402.	2.6	36
35	Pathologic response prediction to neoadjuvant chemotherapy utilizing pretreatment near-infrared imaging parameters and tumor pathologic criteria. Breast Cancer Research, 2014, 16, 456.	5.0	35
36	Doppler angle and flow velocity mapping by combined Doppler shift and Doppler bandwidth measurements in optical Dopplertomography. Optics Letters, 2003, 28, 1120.	3.3	34

#	Article	IF	CITATIONS
37	Characterization of ovarian tissue based on quantitative analysis of photoacoustic microscopy images. Biomedical Optics Express, 2013, 4, 2763.	2.9	34
38	An overview of optical coherence tomography for ovarian tissue imaging and characterization. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 1-16.	6.1	34
39	Real-time colorectal cancer diagnosis using PR-OCT with deep learning. Theranostics, 2020, 10, 2587-2596.	10.0	34
40	Design of optimal light delivery system for co-registered transvaginal ultrasound and photoacoustic imaging of ovarian tissue. Photoacoustics, 2015, 3, 114-122.	7.8	32
41	Optical Tomography with Ultrasound Localization for Breast Cancer Diagnosis and Treatment Monitoring. Surgical Oncology Clinics of North America, 2007, 16, 307-321.	1.5	31
42	Diffuse optical tomography reconstruction method using ultrasound images as prior for regularization matrix. Journal of Biomedical Optics, 2017, 22, 026002.	2.6	31
43	In vivo photoacoustic tumor tomography using a quinoline-annulated porphyrin as NIR molecular contrast agent. Organic and Biomolecular Chemistry, 2017, 15, 972-983.	2.8	31
44	Synthesis and fluorescent characteristics of imidazole–indocyanine green conjugates. Dyes and Pigments, 2011, 89, 9-15.	3.7	30
45	Recognition algorithm for assisting ovarian cancer diagnosis from coregistered ultrasound and photoacoustic images: <i>ex vivo</i> study. Journal of Biomedical Optics, 2012, 17, 126003.	2.6	30
46	Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature. Journal of Biomedical Optics, 2013, 18, 126014.	2.6	30
47	Targeting tumor hypoxia: a third generation 2-nitroimidazole-indocyanine dye-conjugate with improved fluorescent yield. Organic and Biomolecular Chemistry, 2015, 13, 11220-11227.	2.8	30
48	Design of miniaturized illumination for transvaginal co-registered photoacoustic and ultrasound imaging. Biomedical Optics Express, 2014, 5, 3074.	2.9	29
49	Mechanisms of the ultrasonic modulation of fluorescence in turbid media. Journal of Applied Physics, 2008, 104, 103102.	2.5	28
50	Indocyanine green enhanced co-registered diffuse optical tomography and photoacoustic tomography. Journal of Biomedical Optics, 2013, 18, 126006.	2.6	26
51	Classification and analysis of human ovarian tissue using full field optical coherence tomography. Biomedical Optics Express, 2016, 7, 5182.	2.9	26
52	Classification of human ovarian cancer using functional, spectral, and imaging features obtained from in vivo photoacoustic imaging. Biomedical Optics Express, 2019, 10, 2303.	2.9	26
53	Interlaced photoacoustic and ultrasound imaging system with real-time coregistration for ovarian tissue characterization. Journal of Biomedical Optics, 2014, 19, 1.	2.6	24
54	A review of optical breast imaging: Multi-modality systems for breast cancer diagnosis. European Journal of Radiology, 2020, 129, 109067.	2.6	24

QUING ZHU

#	Article	IF	CITATIONS
55	A prototype hybrid intraoperative probe for ovarian cancer detection. Optics Express, 2009, 17, 7245.	3.4	23
56	Time-resolved optical measurements with spread spectrum excitation. Optics Letters, 2002, 27, 1806.	3.3	22
57	Time-resolved diffusive optical imaging using pseudo-random bit sequences. Optics Express, 2003, 11, 3445.	3.4	22
58	Imaging Tumor Oxyhemoglobin and Deoxyhemoglobin Concentrations with Ultrasound-Guided Diffuse Optical Tomography. Technology in Cancer Research and Treatment, 2011, 10, 417-429.	1.9	22
59	Structurally modified indocyanine green dyes. Modification of the polyene linker. Dyes and Pigments, 2013, 99, 275-283.	3.7	22
60	Two step imaging reconstruction using truncated pseudoinverse as a preliminary estimate in ultrasound guided diffuse optical tomography. Biomedical Optics Express, 2017, 8, 5437.	2.9	21
61	Optimized light delivery probe using ball lenses for co-registered photoacoustic and ultrasound endo-cavity subsurface imaging. Photoacoustics, 2019, 13, 66-75.	7.8	21
62	Digital signal processor-based real-time optical Doppler tomography system. Journal of Biomedical Optics, 2004, 9, 454.	2.6	20
63	ldentifying an early treatment window for predicting breast cancer response to neoadjuvant chemotherapy using immunohistopathology and hemoglobin parameters. Breast Cancer Research, 2018, 20, 56.	5.0	20
64	Machine learning model with physical constraints for diffuse optical tomography. Biomedical Optics Express, 2021, 12, 5720.	2.9	20
65	Cytotoxic evaluation of root-end filling materials in cultures of human osteoblast-like cells and periodontal ligament cells. Journal of Endodontics, 1999, 25, 410-412.	3.1	19
66	Effect of the chest wall on breast lesion reconstruction. Journal of Biomedical Optics, 2009, 14, 044005.	2.6	19
67	Potential role of a hybrid intraoperative probe based on OCT and positron detection for ovarian cancer detection and characterization. Biomedical Optics Express, 2011, 2, 1918.	2.9	19
68	Low-cost compact multispectral spatial frequency domain imaging prototype for tissue characterization. Biomedical Optics Express, 2018, 9, 5503.	2.9	18
69	Quantitative analysis of estimated scattering coefficient and phase retardation for ovarian tissue characterization. Biomedical Optics Express, 2012, 3, 1548.	2.9	17
70	Optical Resolution Photoacoustic Microscopy of Ovary and Fallopian Tube. Scientific Reports, 2019, 9, 14306.	3.3	17
71	Assessing Rectal Cancer Treatment Response Using Coregistered Endorectal Photoacoustic and US Imaging Paired with Deep Learning. Radiology, 2021, 299, 349-358.	7.3	17
72	Two-step reconstruction method using global optimization and conjugate gradient for ultrasound-guided diffuse optical tomography. Journal of Biomedical Optics, 2013, 18, 016006.	2.6	16

QUING ZHU

#	Article	IF	CITATIONS
73	Correlating optical coherence elastography based strain measurements with collagen content of the human ovarian tissue. Biomedical Optics Express, 2015, 6, 3806.	2.9	16
74	Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of V taper 2 and V taper 2H rotary NiTi files. Scanning, 2016, 38, 564-570.	1.5	16
75	Role of blood oxygenation saturation in ovarian cancer diagnosis using multiâ€spectral photoacoustic tomography. Journal of Biophotonics, 2021, 14, e202000368.	2.3	16
76	Simultaneous optical coherence tomography imaging and beta particle detection. Optics Letters, 2003, 28, 1704.	3.3	15
77	Optical Tomography with Ultrasound Localization: Initial Clinical Results and Technical Challenges. Technology in Cancer Research and Treatment, 2005, 4, 235-244.	1.9	15
78	Utilizing spatial and spectral features of photoacoustic imaging for ovarian cancer detection and diagnosis. Journal of Biomedical Optics, 2015, 20, 016002.	2.6	15
79	Automated data selection method to improve robustness of diffuse optical tomography for breast cancer imaging. Biomedical Optics Express, 2016, 7, 4007.	2.9	15
80	The Angular Spectrum of the Scattering Coefficient Map Reveals Subsurface Colorectal Cancer. Scientific Reports, 2019, 9, 2998.	3.3	13
81	Co-registered photoacoustic and ultrasound imaging of human colorectal cancer. Journal of Biomedical Optics, 2019, 24, 1.	2.6	13
82	Reducing image artifact in diffuse optical tomography by iterative perturbation correction based on multiwavelength measurements. Journal of Biomedical Optics, 2019, 24, 1.	2.6	13
83	Optimal breast cancer diagnostic strategy using combined ultrasound and diffuse optical tomography. Biomedical Optics Express, 2020, 11, 2722.	2.9	13
84	Integrin expression in human dental pulp cells and their role in cell attachment on extracellular matrix proteins. Journal of Endodontics, 1998, 24, 641-644.	3.1	12
85	A three-parameter logistic model to characterize ovarian tissue using polarization-sensitive optical coherence tomography. Biomedical Optics Express, 2013, 4, 772.	2.9	12
86	Quantitative multispectral ex vivo optical evaluation of human ovarian tissue using spatial frequency domain imaging. Biomedical Optics Express, 2018, 9, 2451.	2.9	12
87	Estimation and imaging of breast lesions using a two-layer tissue structure by ultrasound-guided optical tomography. Journal of Biomedical Optics, 2015, 20, 066002.	2.6	11
88	Histogram analysis of en face scattering coefficient map predicts malignancy in human ovarian tissue. Journal of Biophotonics, 2019, 12, e201900115.	2.3	11
89	Breast tumor characterization via complex natural resonances. , 0, , .		10
90	Fast, limitedâ€data photoacoustic imaging for multiplexed systems using a frequencyâ€domain estimation technique. Medical Physics, 2011, 38, 1503-1518.	3.0	10

#	Article	IF	CITATIONS
91	Tuning to optimize SVM approach for assisting ovarian cancer diagnosis with photoacoustic imaging. Bio-Medical Materials and Engineering, 2015, 26, S975-S981.	0.6	10
92	Improving DOT reconstruction with a Born iterative method and US-guided sparse regularization. Biomedical Optics Express, 2019, 10, 2528.	2.9	10
93	Adaptive Boosting (AdaBoost)â€based multiwavelength spatial frequency domain imaging and characterization for ex vivo human colorectal tissue assessment. Journal of Biophotonics, 2020, 13, e201960241.	2.3	9
94	Ultrasound segmentation-guided edge artifact reduction in diffuse optical tomography using connected component analysis. Biomedical Optics Express, 2021, 12, 5320.	2.9	9
95	Diffuse optical tomography using semiautomated coregistered ultrasound measurements. Journal of Biomedical Optics, 2017, 22, 1.	2.6	9
96	Deep learning-based method to accurately estimate breast tissue optical properties in the presence of the chest wall. Journal of Biomedical Optics, 2021, 26, .	2.6	9
97	Human colorectal cancer tissue assessment using optical coherence tomography catheter and deep learning. Journal of Biophotonics, 2022, 15, e202100349.	2.3	9
98	Power-efficient grating-based scanning optical delay line: time-domain configuration. Electronics Letters, 2004, 40, 97.	1.0	8
99	Optical tomography method that accounts for tilted chest wall in breast imaging. Journal of Biomedical Optics, 2010, 15, 041515.	2.6	8
100	Light shadowing effect of large breast lesions imaged by optical tomography in reflection geometry. Journal of Biomedical Optics, 2010, 15, 036003.	2.6	8
101	Artifact reduction method in ultrasound-guided diffuse optical tomography using exogenous contrast agents. Journal of Biomedical Optics, 2011, 16, 046015.	2.6	8
102	Synthesis of a 4-nitroimidazole indocyanine dye-conjugate and imaging of tumor hypoxia in BALB/c tumor-bearing female mice. Dyes and Pigments, 2016, 126, 251-260.	3.7	8
103	Diagnosing colorectal abnormalities using scattering coefficient maps acquired from optical coherence tomography. Journal of Biophotonics, 2021, 14, e202000276.	2.3	8
104	Photoacoustic tomography reconstruction using lag-based delay multiply and sum with a coherence factor improves in vivo ovarian cancer diagnosis. Biomedical Optics Express, 2021, 12, 2250.	2.9	8
105	Early Assessment Window for Predicting Breast Cancer Neoadjuvant Therapy using Biomarkers, Ultrasound, and Diffuse Optical Tomography. Breast Cancer Research and Treatment, 2021, 188, 615-630.	2.5	8
106	Special Section Guest Editorial: Photoacoustic Imaging and Sensing. Journal of Biomedical Optics, 2017, 22, 041001.	2.6	7
107	Improving breast cancer diagnosis by reducing chest wall effect in diffuse optical tomography. Journal of Biomedical Optics, 2017, 22, 036004.	2.6	7
108	Label-free quantitative optical assessment of human colon tissue using spatial frequency domain imaging. Techniques in Coloproctology, 2018, 22, 617-621.	1.8	7

#	Article	IF	CITATIONS
109	Target depth-regularized reconstruction in diffuse optical tomography using ultrasound segmentation as prior information. Biomedical Optics Express, 2020, 11, 3331.	2.9	6
110	Fiber endface illumination diffuser for endo-cavity photoacoustic imaging. Optics Letters, 2020, 45, 632.	3.3	6
111	An Automated Preprocessing Method for Diffuse Optical Tomography to Improve Breast Cancer Diagnosis. Technology in Cancer Research and Treatment, 2018, 17, 153303381880279.	1.9	5
112	Prospective assessment of adjunctive ultrasound-guided diffuse optical tomography in women undergoing breast biopsy: Impact on BI-RADS assessments. European Journal of Radiology, 2021, 145, 110029.	2.6	5
113	Combined ultrasound and near infrared diffusive light imaging. , 0, , .		4
114	Light-emitting diode-based multiwavelength diffuse optical tomography system guided by ultrasound. Journal of Biomedical Optics, 2014, 19, 126003.	2.6	4
115	A review of co-registered transvaginal photoacoustic and ultrasound imaging for ovarian cancer diagnosis. Current Opinion in Biomedical Engineering, 2022, 22, 100381.	3.4	4
116	The role of integrin β1 in human dental pulp cell adhesion on laminin and fibronectin. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 1998, 85, 314-318.	1.4	3
117	The design of a 1.75-D 1280-channel ultrasound imaging system. , 0, , .		3
118	Photoacoustic laser effects in live mouse blastocysts: pilot safety studies of DNA damage from photoacoustic imaging doses. F&S Science, 2020, 1, 53-58.	0.9	3
119	Effect and correction of optode coupling errors in breast imaging using diffuse optical tomography. Biomedical Optics Express, 2021, 12, 689.	2.9	3
120	Co-Registered Ultrasound and Photoacoustic Probe with a Miniaturized Light Illumination Scheme for in vivo Ovarian Cancer Imaging. , 2014, , .		3
121	Low-cost ultrasound and optical gelatin-based phantoms. , 2019, , .		3
122	Elevation beamforming performance of a 1.75 D array. , 0, , .		2
123	Coherent artifacts in optical coherence tomography: observation and cancellation. , 0, , .		2
124	A Novel Electronic Architecture Used to Support Biomedical Photo-Acoustic Imaging. , 0, , .		2
125	Time-gating scheme based on a photodiode for single-photon counting. Optics Letters, 2011, 36, 2501.	3.3	2
126	Fiber endface photoacoustic generator for quantitative photoacoustic tomography. Optics Letters, 2021, 46, 2706.	3.3	2

#	Article	IF	CITATIONS
127	Rectal Cancer Treatment Management: Deep-Learning Neural Network Based on Photoacoustic Microscopy Image Outperforms Histogram-Feature-Based Classification. Frontiers in Oncology, 2021, 11, 715332.	2.8	2
128	Treatment of Male Breast Cancer by Dual Human Epidermal Growth Factor Receptor 2 (HER2) Blockade and Response Prediction Using Novel Optical Tomography Imaging: A Case Report. Cureus, 2017, 9, e1481.	0.5	2
129	Clustered targets imaged by optical tomography guided by ultrasound. Journal of Biomedical Optics, 2011, 16, 076018.	2.6	1
130	Development of a simultaneous PET/Ultrasound imaging system with near real-time reconstruction capability for point-of-care applications. , 2017, , .		1
131	Treasure hunt for peptides with undefined chemical modifications: Proteomics identification of differential albumin adducts of 2â€nitroimidazoleâ€indocyanine green in hypoxic tumor. Journal of Mass Spectrometry, 2020, 55, e4376.	1.6	1
132	A multi spectral hand-held spatial frequency domain imaging system for imaging human colorectal cancer. , 2019, , .		1
133	Real-time colorectal cancer diagnosis using PR-OCT with deep learning. , 2020, , .		1
134	Auto encoder based deep learning reconstruction for diffuse optical tomography. , 2022, , .		1
135	Near Infrared Diffusive Light Imaging with Ultrasound Localization. Optics and Photonics News, 2001, 12, 31.	0.5	0
136	Novel image reconstruction algorithm for NIR diffusive tomography. , 0, , .		0
137	Beamforming scheme and parameter tradeoff in a 1.75 D ultrasound array design. , 0, , .		0
138	Preliminary experiment results of a 1.75D ultrasound array. , 0, , .		0
139	Imaging of fluid flow velocity using Doppler optical coherence tomography: preliminary results. , 0, , .		0
140	Optical Doppler coherence tomography algorithms: quantitative analysis. , 0, , .		0
141	2-D NIR imaging reconstruction with ultrasound guidance. , 0, , .		0
142	Engineering a Health Level Seven Standard Interface and Wireless Infrastructure to Improve the Efficiency of Electrocardiogram Analysis at Hartford Hospital. Journal of Clinical Engineering, 2010, 35, 95-97.	0.1	0
143	Co-registered ultrasound Doppler with ultrasound and photoacoustic imaging to improve delineation of ovarian lesion for photoacoustic imaging. , 2019, , .		0
144	Co-registered photoacoustic and ultrasound real-time imaging of colorectal cancer: ex-vivo studies. , 2019, , .		0

#	Article	IF	CITATIONS
145	Optimizing light delivery through ball-shaped multimode fiber tips in co-registered photoacoustic and ultrasound endo-cavity imaging: simulation and experimental validation. , 2019, , .		Ο
146	Ultrasound and acoustic resolution photoacoustic microscopy: a novel modality for surveilling human rectal cancer after therapy. , 2019, , .		0
147	AdaBoost-based multi-wavelength spatial frequency domain imaging for human colorectal tissue assessment. , 2020, , .		0
148	Dual-modality Photoacoustic and Ultrasound Imaging for Assessing Treatment Response in Colorectal Cancer: a pilot study. , 2020, , .		0
149	Effect of Breast Contour and Optode Coupling Error on Ultrasound-guided Diffuse Optical Tomography. , 2020, , .		0
150	Prospective Assessment of Adjunctive Ultrasound-Guided Diffuse Optical Tomography in Women Undergoing Breast Biopsy: Impact on BI-RADS Assessments. , 2022, , .		0
151	Difference Imaging From Single Measurements in Diffuse Optical Tomography: A Deep Learning Approach. , 2022, , .		0