Peter A Crozier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3275225/publications.pdf

Version: 2024-02-01

200 papers

6,848 citations

57631 44 h-index 69108 77 g-index

206 all docs

206 docs citations

206 times ranked 7780 citing authors

#	Article	IF	CITATIONS
1	Vibrational spectroscopy in the electron microscope. Nature, 2014, 514, 209-212.	13.7	568
2	Brown Carbon Spheres in East Asian Outflow and Their Optical Properties. Science, 2008, 321, 833-836.	6.0	432
3	Stabilized Gold Nanoparticles on Ceria Nanorods by Strong Interfacial Anchoring. Journal of the American Chemical Society, 2012, 134, 20585-20588.	6.6	348
4	Atomic-Scale Observations of Catalyst Structures under Reaction Conditions and during Catalysis. Chemical Reviews, 2016, 116, 3487-3539.	23.0	261
5	Approaching the Resolution Limit of Nanometer-Scale Electron Beam-Induced Deposition. Nano Letters, 2005, 5, 1303-1307.	4.5	251
6	Current status and future directions for in situ transmission electron microscopy. Ultramicroscopy, 2016, 170, 86-95.	0.8	181
7	SSZ-26 and SSZ-33: Two Molecular Sieves with Intersecting 10- and 12-Ring Pores. Science, 1993, 262, 1543-1546.	6.0	165
8	Dealloying of Noble-Metal Alloy Nanoparticles. Nano Letters, 2014, 14, 2569-2577.	4.5	151
9	In situ environmental TEM studies of dynamic changes in cerium-based oxides nanoparticles during redox processes. Ultramicroscopy, 2008, 108, 1432-1440.	0.8	132
10	Oxygen vacancy migration in ceria and Pr-doped ceria: A DFT+U study. Journal of Chemical Physics, 2010, 132, 094104.	1.2	128
11	Dynamic structure of active sites in ceria-supported Pt catalysts for the water gas shift reaction. Nature Communications, 2021, 12, 914.	5.8	103
12	Metal sintering mechanisms and regeneration of palladium/alumina hydrogenation catalysts. Applied Catalysis A: General, 2005, 282, 111-121.	2.2	100
13	Beam-Induced Damage to Thin Specimens in an Intense Electron Probe. Microscopy and Microanalysis, 2006, 12, 65-71.	0.2	100
14	Atomic Level In Situ Observation of Surface Amorphization in Anatase Nanocrystals During Light Irradiation in Water Vapor. Nano Letters, 2013, 13, 679-684.	4.5	100
15	Synthesis of ternary SiGeSn semiconductors on Si(100) via SnxGe1â^'x buffer layers. Applied Physics Letters, 2003, 83, 2163-2165.	1.5	97
16	Quantitative elemental mapping of materials by energy-filtered imaging. Ultramicroscopy, 1995, 58, 157-174.	0.8	93
17	Electrical conductivity and grain boundary composition of Gd-doped and Gd/Pr co-doped ceria. Solid State Ionics, 2015, 272, 9-17.	1.3	89
18	In situ analysis of gas composition by electron energy-loss spectroscopy for environmental transmission electron microscopy. Ultramicroscopy, 2011, 111, 177-185.	0.8	81

#	Article	IF	Citations
19	In situ preparation of Ni–Cu/TiO2 bimetallic catalysts. Journal of Catalysis, 2009, 262, 73-82.	3.1	80
20	Measuring the Redox Activity of Individual Catalytic Nanoparticles in Cerium-Based Oxides. Nano Letters, 2008, 8, 962-967.	4.5	79
21	Vibrational spectroscopy at atomic resolution with electron impact scattering. Nature Physics, 2019, 15, 1237-1241.	6.5	78
22	Nanometer-scale composition measurements of Ge/Si(100) islands. Applied Physics Letters, 2003, 82, 1473-1475.	1.5	77
23	Operando Transmission Electron Microscopy: A Technique for Detection of Catalysis Using Electron Energy-Loss Spectroscopy in the Transmission Electron Microscope. ACS Catalysis, 2012, 2, 2395-2402.	5.5	74
24	A density functional study of defect migration in gadolinium doped ceria. Physical Chemistry Chemical Physics, 2010, 12, 7904.	1.3	71
25	Physicochemical Characterization of Zeolites SSZ-26 and SSZ-33. The Journal of Physical Chemistry, 1994, 98, 12040-12052.	2.9	70
26	In situ synthesis and characterization of Ru promoted Co/Al2O3 Fischer–Tropsch catalysts. Applied Catalysis A: General, 2006, 307, 212-221.	2.2	68
27	Synthesis of uniform GaN quantum dot arrays via electron nanolithography of D2GaN3. Applied Physics Letters, 2004, 84, 3441-3443.	1.5	65
28	Biassed secondary electron imaging in a UHV-STEM. Ultramicroscopy, 1989, 31, 111-115.	0.8	64
29	Structural Transformation in Ceria Nanoparticles during Redox Processes. Journal of Physical Chemistry C, 2009, 113, 5700-5704.	1.5	64
30	Vibrational and valence aloof beam EELS: A potential tool for nondestructive characterization of nanoparticle surfaces. Ultramicroscopy, 2017, 180, 104-114.	0.8	64
31	Atomicâ€Scale Observation of the Ni Activation Process for Partial Oxidation of Methane Using Inâ€Situ Environmental TEM. ChemCatChem, 2011, 3, 1051-1059.	1.8	62
32	<i>In situ</i> and <i>operando</i> transmission electron microscopy of catalytic materials. MRS Bulletin, 2015, 40, 38-45.	1.7	61
33	Structural Evolution during Photocorrosion of Ni/NiO Core/Shell Cocatalyst on TiO ₂ . Journal of Physical Chemistry C, 2015, 119, 7207-7214.	1.5	61
34	Electron-beam-induced reactions at transition-metal oxide surfaces. Vacuum, 1991, 42, 301-308.	1.6	59
35	Epitaxial growth of group III nitrides on silicon substrates via a reflective lattice-matched zirconium diboride buffer layer. Applied Physics Letters, 2003, 82, 2398-2400.	1.5	56
36	Theoretical study of environmental dependence of oxygen vacancy formation in CeO2. Applied Physics Letters, 2005, 87, 141917.	1.5	56

#	Article	IF	Citations
37	Direct observation of hydrogen spillover in Ni-loaded Pr-doped ceria. Catalysis Today, 2012, 180, 2-8.	2.2	56
38	Lattice measurement and alloy compositions in metal and bimetallic nanoparticles. Ultramicroscopy, 2003, 98, 63-72.	0.8	55
39	Kinetic lattice Monte Carlo model for oxygen vacancy diffusion in praseodymium doped ceria: Applications to materials design. Journal of Solid State Chemistry, 2011, 184, 811-817.	1.4	53
40	Atomic level fluxional behavior and activity of CeO2-supported Pt catalysts for CO oxidation. Nature Communications, 2021, 12, 5789.	5.8	53
41	Low-dose high-resolution electron microscopy of zeolite materials with a slow-scan CCD camera. Ultramicroscopy, 1993, 48, 332-340.	0.8	50
42	Synthesis, Structure, and Physicochemical and Catalytic Characterization of the Novel High-Silica Large-Pore Zeolite SSZ-42. Chemistry - A European Journal, 1998, 4, 1312-1323.	1.7	49
43	Growth behavior near the ultimate resolution of nanometer-scale focused electron beam-induced deposition. Nanotechnology, 2008, 19, 225305.	1.3	46
44	In situ environmental transmission electron microscopy to determine transformation pathways in supported Ni nanoparticles. Micron, 2012, 43, 1188-1194.	1.1	45
45	Analysis of Catalytic Gas Products Using Electron Energy-Loss Spectroscopy and Residual Gas Analysis for <i>Operando</i> Transmission Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 815-824.	0.2	45
46	Nanoscale Heterogeneity in Ceria Zirconia with Low-Temperature Redox Properties. Journal of Physical Chemistry B, 2006, 110, 18278-18285.	1.2	44
47	Measurement of inelastic electron scattering cross-sections by electron energy-loss spectroscopy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 1990, 61, 311-336.	0.6	43
48	SnGe superstructure materials for Si-based infrared optoelectronics. Applied Physics Letters, 2003, 83, 3489-3491.	1.5	42
49	Nanoscale Probing of Local Hydrogen Heterogeneity in Disordered Carbon Nitrides with Vibrational Electron Energy-Loss Spectroscopy. ACS Nano, 2018, 12, 5463-5472.	7.3	42
50	Quantitative imaging and diffraction of zeolites using a slow-scan CCD camera. Ultramicroscopy, 1993, 52, 487-498.	0.8	40
51	Growth and characterization of CdTe/Si heterostructures — effect of substrate orientation. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 77, 93-100.	1.7	40
52	A model study on the carburization process of iron-based Fischerâ€"Tropsch catalysts using in situ TEMâ€"EELS. Applied Catalysis B: Environmental, 2011, 102, 521-527.	10.8	40
53	In SituElectron Microscopy Studies of the Sintering of Palladium Nanoparticles on Alumina during Catalyst Regeneration Processes. Microscopy and Microanalysis, 2004, 10, 77-85.	0.2	39
54	System for <i>In Situ < /i> UV-Visible Illumination of Environmental Transmission Electron Microscopy Samples. Microscopy and Microanalysis, 2013, 19, 461-469.</i>	0.2	39

#	Article	IF	Citations
55	Structure–reactivity relationships of Ni–NiO core–shell co-catalysts on Ta2O5 for solar hydrogen production. Applied Catalysis B: Environmental, 2015, 172-173, 58-64.	10.8	39
56	Detection of water and its derivatives on individual nanoparticles using vibrational electron energy-loss spectroscopy. Ultramicroscopy, 2016, 169, 30-36.	0.8	38
57	Oxidation and Reduction of Small Palladium Particles on Silica. Microscopy and Microanalysis, 1998, 4, 278-285.	0.2	37
58	Low-Temperature Epitaxial Growth of the Quaternary Wide Band Gap Semiconductor SiCAlN. Physical Review Letters, 2002, 88, 206102.	2.9	36
59	Enhanced ionic conductivity in electroceramics by nanoscale enrichment of grain boundaries with high solute concentration. Nanoscale, 2017, 9, 17293-17302.	2.8	36
60	Dynamic nucleation and growth of Ni nanoparticles on high-surface area titania. Surface Science, 2006, 600, 693-702.	0.8	35
61	Microstructural evolution of Ge/Si(100) nanoscale islands. Journal of Crystal Growth, 2003, 259, 232-244.	0.7	34
62	In search of enhanced electrolyte materials: a case study of doubly doped ceria. Journal of Materials Chemistry, 2011, 21, 18991.	6.7	33
63	In Situ Synthesis and Nanoscale Evolution of Model Supported Metal Catalysts: Ni on Silica. Journal of Physical Chemistry C, 2012, 116, 11486-11495.	1.5	32
64	Predicting the optimal dopant concentration in gadolinium doped ceria: a kinetic lattice Monte Carlo approach. Modelling and Simulation in Materials Science and Engineering, 2012, 20, 015004.	0.8	31
65	Observation of exit surface sputtering in TiO2 using biased secondary electron imaging. Surface Science, 1990, 237, 232-240.	0.8	30
66	Atomic-scale imaging of asymmetric Lomer dislocation cores at the Ge/Si(001) heterointerface. Applied Physics Letters, 2004, 84, 2530-2532.	1.5	29
67	Measuring bandgap states in individual non-stoichiometric oxide nanoparticles using monochromated STEM EELS: The Praseodymium–ceria case. Ultramicroscopy, 2016, 167, 5-10.	0.8	29
68	Evolution of Ge/Si(100) island morphology at high temperature. Applied Physics Letters, 2002, 80, 3623-3625.	1.5	28
69	New Magnetic Order in Buried Native Iron Oxide Layers. Physical Review Letters, 2003, 91, 267201.	2.9	28
70	Coupling of strain, stress, and oxygen non-stoichiometry in thin film Pr _{0.1} Ce _{0.9} O _{2â^Î} . Nanoscale, 2016, 8, 16499-16510.	2.8	28
71	Ca segregation and step modifications on cleaved and annealed MgO(100) surfaces. Surface Science, 1993, 284, 186-199.	0.8	27
72	Atomic-Scale Study of in Situ Metal Nanoparticle Synthesis in a Ni/TiO2System. Journal of Physical Chemistry B, 2005, 109, 13883-13890.	1.2	26

#	Article	IF	CITATIONS
73	A spray drying system for synthesis of rare-earth doped cerium oxide nanoparticles. Chemical Physics Letters, 2010, 495, 280-286.	1.2	26
74	Al ₂ O ₃ and SiO ₂ Atomic Layer Deposition Layers on ZnO Photoanodes and Degradation Mechanisms. ACS Applied Materials & Degradation Mechanisms. ACS Applied Mechanisms Mechanis	4.0	26
75	In-Situ and Ex-Situ Microscopic Study of Gas Phase Propylene Polymerization over a High Activity TiCl4-MgCl2 Heterogeneous Ziegler-Natta Catalyst. Macromolecular Rapid Communications, 2001, 22, 34-40.	2.0	25
76	Novel sample preparation for operando TEM of catalysts. Ultramicroscopy, 2015, 156, 18-22.	0.8	25
77	One nanometer structure fabrication using electron beam induced deposition. Microelectronic Engineering, 2006, 83, 1468-1470.	1.1	24
78	Mechanical Properties of Titanium Nitride Nanocomposites Produced by Chemical Precursor Synthesis Followed by High-P,T Treatment. Materials, 2011, 4, 1747-1762.	1.3	24
79	The influence of surfaces and interfaces on high spatial resolution vibrational EELS from SiO2. Microscopy (Oxford, England), 2018, 67, i14-i23.	0.7	24
80	Stoichiometric and non-stoichiometric films in the Si–O–N system: mechanical, electrical, and dielectric properties. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 97, 54-58.	1.7	23
81	Environmental Transmission Electron Microscopy in Nanotechnology. , 2005, , 531-565.		23
82	Characterization of light-absorbing carbon particles at three altitudes in East Asian outflow by transmission electron microscopy. Atmospheric Chemistry and Physics, 2013, 13, 6359-6371.	1.9	23
83	Vibrational electron energy loss spectroscopy in truncated dielectric slabs. Physical Review B, 2018, 98, .	1.1	23
84	Developing and Evaluating Deep Neural Network-Based Denoising for Nanoparticle TEM Images with Ultra-Low Signal-to-Noise. Microscopy and Microanalysis, 2021, 27, 1431-1447.	0.2	23
85	In-Plane Structural Fluctuations in Differently Condensed Graphitic Carbon Nitrides. Chemistry of Materials, 2021, 33, 195-204.	3.2	23
86	Preparation and characterization of MgO surfaces by reflection electron microscopy. Microscopy Research and Technique, 1992, 20, 426-438.	1.2	22
87	CrO _x -Mediated Performance Enhancement of Ni/NiO-Mg:SrTiO ₃ in Photocatalytic Water Splitting. ACS Catalysis, 2021, 11, 11049-11058.	5.5	22
88	In siturealâ€time environmental TEM of gas phase Ziegler–Natta catalytic polymerization of propylene. Journal of Electron Microscopy, 2002, 51, S27-S39.	0.9	21
89	Atomic Scale Characterization of Fluxional Cation Behavior on Nanoparticle Surfaces: Probing Oxygen Vacancy Creation/Annihilation at Surface Sites. ACS Nano, 2021, 15, 2624-2634.	7.3	21
90	A compact parallelâ€recording detector for EELS. Journal of Microscopy, 1987, 148, 157-166.	0.8	19

#	Article	IF	Citations
91	Direct quantitative measurement of compositional enrichment and variations in InyGalâ^'yAs quantum dots. Applied Physics Letters, 2001, 79, 3170-3172.	1.5	19
92	Novel synthetic pathways to wide bandgap semiconductors in the Si–C–Al–N system. Solid State Sciences, 2002, 4, 1509-1519.	1.5	19
93	Tracking the picoscale spatial motion of atomic columns during dynamic structural change. Ultramicroscopy, 2020, 213, 112978.	0.8	19
94	An Environmental Transmission Electron Microscope for In-Situ Observation of Chemical Processes at the Nanometer Level. Microscopy and Microanalysis, 2003, 9, 912-913.	0.2	18
95	Linking Changes in Reaction Kinetics and Atomic-Level Surface Structures on a Supported Ru Catalyst for CO Oxidation. ACS Catalysis, 2021, 11, 1456-1463.	5 . 5	18
96	Direct observation of reduction of PdO to Pd metal by in situ electron microscopy. Studies in Surface Science and Catalysis, 2000, 130, 3119-3124.	1.5	16
97	Low-temperature growth of SiCAlN films of high hardness on Si(111) substrates. Applied Physics Letters, 2001, 79, 2880-2882.	1.5	16
98	Effects of stress on phase separation in InxGa1â^'xN/GaN multiple quantum-wells. Acta Materialia, 2011, 59, 3759-3769.	3.8	15
99	Metal-free synthesis of carbon nanotubes filled with calcium silicate. Carbon, 2012, 50, 2666-2669.	5.4	14
100	Oxygen Transfer at Metal-Reducible Oxide Nanocatalyst Interfaces: Contrasting Carbon Growth from Ethane and Ethylene. ACS Applied Nano Materials, 2018, 1, 1360-1369.	2.4	14
101	Linking Macroscopic and Nanoscopic Ionic Conductivity: A Semiempirical Framework for Characterizing Grain Boundary Conductivity in Polycrystalline Ceramics. ACS Applied Materials & Linterfaces, 2020, 12, 507-517.	4.0	14
102	Nanoscale Oxide Patterning with Electronâ^'Solidâ^'Gas Reactions. Nano Letters, 2007, 7, 2395-2398.	4.5	13
103	Approaches to Exploring Spatio-Temporal Surface Dynamics in Nanoparticles with <i>In Situ</i> Transmission Electron Microscopy. Microscopy and Microanalysis, 2020, 26, 86-94.	0.2	13
104	Proximity effects in nanoscale patterning with high resolution electron beam induced deposition. Journal of Vacuum Science & Technology B, 2008, 26, 249.	1.3	12
105	Derivation of Optical Properties of Carbonaceous Aerosols by Monochromated Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2014, 20, 748-759.	0.2	12
106	Nanoscale probing of resonant photonic modes in dielectric nanoparticles with focused electron beams. Physical Review B, 2019, 99, .	1.1	12
107	Synthesis of Highly Coherent SiGe and Si4Ge Nanostructures by Molecular Beam Epitaxy of H3SiGeH3and Ge(SiH3)4. Chemistry of Materials, 2003, 15, 3569-3572.	3.2	11
108	Epitaxial semimetallic HfxZr1â^'xB2 templates for optoelectronic integration on silicon. Applied Physics Letters, 2006, 89, 242110.	1.5	11

#	Article	IF	CITATIONS
109	Nanoscale compositional and structural evolution in ceria zirconia during cyclic redox treatments. Journal of Materials Chemistry, 2010, 20, 7497.	6.7	11
110	Anisotropic Nanocrystal Dissolution Observation by in Situ Transmission Electron Microscopy. Nano Letters, 2012, 12, 5708-5713.	4. 5	11
111	An Open-Cell Environmental Transmission Electron Microscopy Technique for In Situ Characterization of Samples in Aqueous Liquid Solutions. Microscopy and Microanalysis, 2020, 26, 134-138.	0.2	10
112	Nanoscale probing of bandgap states on oxide particles using electron energy-loss spectroscopy. Ultramicroscopy, 2017, 178, 2-11.	0.8	9
113	Light induced coarsening of metal nanoparticles. Journal of Materials Chemistry A, 2019, 7, 11756-11763.	5.2	9
114	Role of Convergence and Collection Angles in the Excitation of Long- and Short-Wavelength Phonons with Vibrational Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2021, 27, 1069-1077.	0.2	8
115	Chemical kinetics for operando electron microscopy of catalysts: 3D modeling of gas and temperature distributions during catalytic reactions. Ultramicroscopy, 2020, 218, 113080.	0.8	7
116	Properties of Dipole-Mode Vibrational Energy Losses Recorded From a TEM Specimen. Microscopy and Microanalysis, 2020, 26, 1117-1123.	0.2	7
117	Nanocharacterization of Heterogeneous Catalysts by Ex Situ and In Situ STEM., 2011,, 537-582.		6
118	Characterization and application of supported metal catalysts with well-tailored pore systems and metal dispersions. Fresenius' Journal of Analytical Chemistry, 1998, 361, 677-679.	1.5	5
119	Detection and Characterization of OH Vibrational Modes using High Energy Resolution EELS. Microscopy and Microanalysis, 2015, 21, 1473-1474.	0.2	5
120	Photochemical Reaction Patterns on Heterostructures of ZnO on Periodically Poled Lithium Niobate. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26365-26373.	4.0	5
121	Dy- and Tb-doped CeO2-Ni cermets for solid oxide fuel cell anodes: electrochemical fabrication, structural characterization, and electrocatalytic performance. Journal of Solid State Electrochemistry, 2018, 22, 3761-3773.	1.2	5
122	Aloof-beam Vibrational Electron Energy-loss Spectroscopy of Adsorbate/Metal Particle Systems. Microscopy and Microanalysis, 2018, 24, 460-461.	0.2	5
123	New Data-Driven Interacting-Defect Model Describing Nanoscopic Grain Boundary Compositions in Ceramics. Journal of Physical Chemistry C, 2020, 124, 23619-23625.	1.5	5
124	Impact of Aliovalent Alkaline-Earth metal solutes on Ceria Grain Boundaries: A density functional theory study. Acta Materialia, 2021, 205, 116481.	3.8	5
125	Advanced and In Situ Analytical Methods for Solar Fuel Materials. Topics in Current Chemistry, 2015, 371, 253-324.	4.0	4
126	Design and Application of an In Situ Illumination System for an Aberration-corrected Environmental Transmission Electron Microscope. Microscopy and Microanalysis, 2016, 22, 730-731.	0.2	4

#	Article	IF	Citations
127	Exploring Vibrational and Electronic Structure of Carbon Nitride Powders Using Monochromated Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2016, 22, 986-987.	0.2	4
128	Atomic-Resolution Operando Observations of Nanostructured Pt/CeC2 Catalysts Performing CO Oxidation. Microscopy and Microanalysis, 2018, 24, 236-237.	0.2	4
129	Background Modelling for Quantitative Analysis in Vibrational EELS. Microscopy and Microanalysis, 2019, 25, 674-675.	0.2	4
130	Atomic-resolution <i>Operando</i> and Time-resolved <i>In Situ</i> TEM Imaging of Oxygen Transfer Reactions Catalyzed by CeO ₂ -supported Pt Nanoparticles. Microscopy and Microanalysis, 2020, 26, 1694-1695.	0.2	4
131	Exploring Blob Detection to Determine Atomic Column Positions and Intensities in Time-Resolved TEM Images with Ultra-Low Signal-to-Noise. Microscopy and Microanalysis, 2022, 28, 1917-1930.	0.2	4
132	In situ TEM observations of Oxygen Surface Dynamics in CeO2 Cubes. Microscopy and Microanalysis, 2017, 23, 1994-1995.	0.2	3
133	Identification of Rapid Oxygen Exchange Through Site-Dependent Cationic Displacements on CeO2 Nanoparticles. Microscopy and Microanalysis, 2018, 24, 54-55.	0.2	3
134	Dynamic Restructuring during Processing: Approaches to Higher Temporal Resolution. Microscopy and Microanalysis, 2019, 25, 1464-1465.	0.2	3
135	Direct Imaging of Zirconia Pillars in Montmorillonite by Analytical Electron Microscopy. Clays and Clay Minerals, 1999, 47, 683-687.	0.6	2
136	Synthesis of Uniform GaN Quantum Dot Arrays via Electron Nanolithography of D ₂ GaN ₃ . Microscopy and Microanalysis, 2004, 10, 356-357.	0.2	2
137	Nanoscale Probing of Adsorbates on Pt/CeO ₂ with Aloof-beam Vibrational Electron Energy-loss Spectroscopy. Microscopy and Microanalysis, 2019, 25, 644-645.	0.2	2
138	<i>Operando</i> Insight into Oxygen Transfer at Pt/CeO ₂ Interfaces during CO Oxidation. Microscopy and Microanalysis, 2019, 25, 1508-1509.	0.2	2
139	Probing Properties of Nanomaterials with Advanced Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2021, 27, 872-874.	0.2	2
140	Determination of Elemental Composition and Structure of Individual Organic Cloud Condensation Nuclei. Microscopy and Microanalysis, 2004, 10, 878-879.	0.2	1
141	Preface. Micron, 2012, 43, 1077.	1.1	1
142	Full Optical Properties of Carbonaceous Aerosols by High Energy Monochromated Electron Energy-loss Spectroscopy. Microscopy and Microanalysis, 2014, 20, 188-189.	0.2	1
143	Bandgaps and Surface Inter-Band States in Photocatalysts with High Energy Resolution EELS. Microscopy and Microanalysis, 2015, 21, 1903-1904.	0.2	1
144	Investigating the Spatial Resolution of Vibrational Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2016, 22, 992-993.	0.2	1

#	Article	IF	Citations
145	Revealing the Structure of Graphitic Carbon Nitride through Low-Dose TEM using a Direct Electron Detector. Microscopy and Microanalysis, 2017, 23, 1808-1809.	0.2	1
146	In situ Imaging and Spectroscopy of the Carbon Deposition Mechanism on Ni/CeO2 Solid Oxide Fuel Cell Anode Catalyst. Microscopy and Microanalysis, 2017, 23, 914-915.	0.2	1
147	Atomic-Resolution Characterization of Surface Structures and Metal-Support Interfaces on Nanostructured Pt/CeO2 Catalysts Performing CO Oxidation. Microscopy and Microanalysis, 2017, 23, 966-967.	0.2	1
148	Local Mapping of Bandgap Electronic State in PrxCe1-xCh2-Î: Elucidating Enhancement and Mechanism of Grain Boundary Electrical Conductivity. Microscopy and Microanalysis, 2017, 23, 1548-1549.	0.2	1
149	Surface Dynamics Associated with Redox Processes on TiO2 Nanoparticles. Microscopy and Microanalysis, 2017, 23, 906-907.	0.2	1
150	Oxygen Ion Conductivity and Composition at the Grain Boundaries of Ca Doped CeO2. Microscopy and Microanalysis, 2018, 24, 1540-1541.	0.2	1
151	Interpreting Cation Displacements and Image Motifs Associated with the Oxygen Exchange Reaction on CeO2 Nanoparticles. Microscopy and Microanalysis, 2018, 24, 144-145.	0.2	1
152	Finite Element Modeling of Gas and Temperature Distributions during Catalytic Reactions in an Environmental Transmission Electron Microscope. Microscopy and Microanalysis, 2019, 25, 2014-2015.	0.2	1
153	Probing Local Structures and Disorder in Graphitic Carbon Nitrides. Microscopy and Microanalysis, 2019, 25, 1690-1691.	0.2	1
154	Coupling of Photonic and Plasmonic Modes in Oxide and Supported Metal Nanoparticles: Finite Element Simulation and EELS Study. Microscopy and Microanalysis, 2021, 27, 888-890.	0.2	1
155	Atom Detection in Time-resolved TEM Image Series: Application of Computer Vision Techniques to Noise-degraded Frames. Microscopy and Microanalysis, 2021, 27, 2224-2225.	0.2	1
156	Describing Atomic-Level Fluxional Behavior in Nanoparticles. Microscopy and Microanalysis, 2021, 27, 1306-1307.	0.2	1
157	Novel Synthetic Pathways to Wide Bandgap Semiconductors in the Si—C—Al—N System ChemInform, 2003, 34, no.	0.1	0
158	Synthesis of Highly Coherent SiGe and Si4Ge Nanostructures by Molecular Beam Epitaxy of H3SiGeH3 and Ge(SiH3)4 Chemlnform, 2003, 34, no.	0.1	0
159	First-principles Study of Defect Migration in RE-doped Ceria (RE = Pr, Gd). Materials Research Society Symposia Proceedings, 2011, 1311, 15801.	0.1	0
160	Atomic Level In-situ Characterization of Metal/TiO2 Photocatalysts under Light Irradiation in Water Vapor. Microscopy and Microanalysis, 2014, 20, 460-461.	0.2	0
161	Atomic Level In-situ Characterization of NiO-TiO2 Photocatalysts under Light Irradiation in Water Vapor. Microscopy and Microanalysis, 2014, 20, 1512-1513.	0.2	0
162	Exploring the Carbon Deposition Mechanism on Ni/Gd Ceria Catalysts. Microscopy and Microanalysis, 2015, 21, 251-252.	0.2	0

#	Article	IF	CITATIONS
163	Opportunities and Challenges for In-Situ Characterization of Photocatalysts in Environmental TEM. Microscopy and Microanalysis, 2015, 21, 735-736.	0.2	O
164	Nano-level Structure-Reactivity Relationships of Ni-NiO Core-shell Co-catalysts on Ta2O5 for Solar Hydrogen Production. Microscopy and Microanalysis, 2015, 21, 639-640.	0.2	0
165	Bandgap State Mapping via Valence-Loss EELS at Grain Boundaries in Non-Stoichiometric Pr \times Ce 1- \times O 2- \hat{l} . Microscopy and Microanalysis, 2016, 22, 970-971.	0.2	О
166	Nanocharacterization of Strontium Titanate Thin Films and Oxide-Electrode Interfaces in Resistive Switching Devices. Microscopy and Microanalysis, 2016, 22, 1568-1569.	0.2	0
167	Nanoscale Strain and Composition Mapping in Ionic Thin Film Heterostructures for Resistive Switching Devices. Microscopy and Microanalysis, 2016, 22, 518-519.	0.2	0
168	In situ TEM Observations of Carbon Deposition on Solid Oxide Fuel Cell Anode Materials. Microscopy and Microanalysis, 2016, 22, 1376-1377.	0.2	0
169	Nanoscale Probing of Bandgap States on Oxide Particles Using Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2016, 22, 972-973.	0.2	0
170	Interfacial Strain Mapping and Chemical Analysis of Strained-Interface Heterostructures by Nanodiffraction and Electron Energy-Loss Spectroscopy. Microscopy and Microanalysis, 2017, 23, 1776-1777.	0.2	0
171	Correlated Electron Microscopy across Length Scales to Elucidate Structural, Electrical and Chemical Properties of Oxide Grain Boundaries. Microscopy and Microanalysis, 2017, 23, 334-335.	0.2	0
172	Understanding guided light modes in oxide nanoparticles with monochromated EELS. Microscopy and Microanalysis, 2017, 23, 1550-1551.	0.2	0
173	Predicting the Electronic Structure of CeO2 Grain Boundaries for Comparison with Atomic Resolution EELS. Microscopy and Microanalysis, 2017, 23, 1556-1557.	0.2	0
174	Probing Interfacial and Surface Effects with Vibrational Electron Energy Loss Spectroscopy. Microscopy and Microanalysis, 2017, 23, 1562-1563.	0.2	0
175	Monochromated EELS and Optical Spectroscopy of Layered Carbon Nitrides. Microscopy and Microanalysis, 2017, 23, 1566-1567.	0.2	0
176	Photocorrosion of Particles in Aqueous Solutions in an Open Cell in the Environmental Transmission Electron Microscope. Microscopy and Microanalysis, 2018, 24, 290-291.	0.2	0
177	Importance of Co-catalyst Dispersion in Pt-functionalized Graphitic Carbon Nitride Photocatalysts. Microscopy and Microanalysis, 2018, 24, 1646-1647.	0.2	0
178	Characterization of Mixed Metal Oxide Interfaces Based on TiO2-supported CeO2-x Nanoparticles. Microscopy and Microanalysis, 2018, 24, 458-459.	0.2	0
179	Probing Functionality for Energy Related Materials; Opportunities for Advanced Electron Microscopy. Microscopy and Microanalysis, 2018, 24, 1468-1469.	0.2	0
180	Determination of Surface Dynamics on CeCh Nanoparticles Using Time-Resolved High-Resolution TEM. Microscopy and Microanalysis, 2018, 24, 1906-1907.	0.2	0

#	Article	IF	Citations
181	Controlled Synthesis of Metal-Support Interface for High Activity CeO2-Supported Pt Nanoparticles. Microscopy and Microanalysis, 2018, 24, 1666-1667.	0.2	0
182	Utilizing Aloof-beam Vibrational EELS for the Detection of Hydrogen and Defect Heterogeneity in Carbon Nitrides. Microscopy and Microanalysis, 2018, 24, 426-427.	0.2	0
183	Local Structural Analysis of Graphitic Carbon Nitrides. Microscopy and Microanalysis, 2018, 24, 1990-1991.	0.2	0
184	Atomic Resolution Transmission Electron Microscopy of Perovskite Nanoparticle Surfaces Exposed to Gas Environments at Elevated Temperatures. Microscopy and Microanalysis, 2018, 24, 1488-1489.	0.2	0
185	Atomic Resolution Vibrational Spectroscopy with On-Axis Detector Geometry. Microscopy and Microanalysis, 2019, 25, 596-597.	0.2	0
186	Sensing Interfacial Visible Light Absorption in TiO2-supported CeO2â^'x Photocatalyst Nanoparticles. Microscopy and Microanalysis, 2019, 25, 2084-2085.	0.2	0
187	Manipulation of Optical Phonon Polaritons in Patterned SiO2 Thin-Films. Microscopy and Microanalysis, 2019, 25, 646-647.	0.2	0
188	Quantifying Structural Transformations from Redox Reactions in TiO2. Microscopy and Microanalysis, 2019, 25, 1476-1477.	0.2	0
189	In Situ Tracking of Picoscale Atomic Displacements with Millisecond Temporal-Resolution During Exchange and Diffusion Processes in Energy Materials in TEM. Microscopy and Microanalysis, 2019, 25, 2004-2005.	0.2	0
190	Structure-Activity Relationships in Pt-Functionalized Graphitic Carbon Nitride Photocatalysts. Microscopy and Microanalysis, 2019, 25, 2202-2203.	0.2	0
191	Real-Time Imaging of Surface Dynamics on CeO2 Nanoparticles using Time-Resolved Aberration-Corrected TEM. Microscopy and Microanalysis, 2019, 25, 2050-2051.	0.2	0
192	Nature of the Vibrational-Loss EELS Peaks Measured from Ionic Specimens. Microscopy and Microanalysis, 2019, 25, 618-619.	0.2	0
193	Exploring Phononic and Photonic Excitations with Monochromated STEM EELS. Microscopy and Microanalysis, 2020, 26, 1494-1496.	0.2	0
194	Effect of Cation Point Defects in Doped Ceria Materials on Surface Oxygen Vacancies and Exchange Reactions. Microscopy and Microanalysis, 2021, 27, 2932-2934.	0.2	0
195	An Atomic Level Study of Localized Strain Fields on Multiple Low-Index Ceria (CeO2) Nanoparticle Surfaces. Microscopy and Microanalysis, 2021, 27, 2918-2920.	0.2	0
196	From In Situ Conversion to Chemical Reaction Kinetics: Development of Truly Operando TEM and its Application to CeO2-Supported Pt Catalysts. Microscopy and Microanalysis, 2021, 27, 2970-2972.	0.2	0
197	Studying Charge Transport and Light Induced Structural Alterations in Ni/NiO Core-Shell Co-Catalysts on SrTiO3 for Solar Hydrogen Evolution. Microscopy and Microanalysis, 2021, 27, 2982-2984.	0.2	0
198	In-situ TEM Study of Oxygen Surface Exchange on Ceria, Gd-doped Ceria and Pr-doped Ceria. Microscopy and Microanalysis, 2021, 27, 2244-2245.	0.2	0

#	Article	lF	CITATIONS
199	Towards Chemical Kinetics for Operando Electron Microscopy of Catalysts: 3D Modeling of Product Gas Distributions and Temperature Profiles During Catalysis. Microscopy and Microanalysis, 2020, 26, 2440-2442.	0.2	0
200	Modeling surface spin polarization on ceria-supported Pt nanoparticles. Journal of Physics Condensed Matter, 2022, , .	0.7	0