Chang-Rong Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3275152/publications.pdf

Version: 2024-02-01

1040056 794594 27 383 9 19 citations g-index h-index papers 27 27 27 333 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Comparative research on semi-active control strategies forÂmagneto-rheological suspension. Nonlinear Dynamics, 2010, 59, 433-453.	5.2	117
2	Dynamic mechanical properties of magnetorheological elastomers based on polyurethane matrix. Polymer Composites, 2016, 37, 1587-1595.	4.6	44
3	Long term stability of magnetorheological fluids using high viscosity linear polysiloxane carrier fluids. Smart Materials and Structures, 2016, 25, 075006.	3.5	33
4	Characterization of stratification for an opaque highly stable magnetorheological fluid using vertical axis inductance monitoring system. Journal of Applied Physics, 2015, 117, .	2.5	30
5	Magnetically induced robust anisotropic structure of multi-walled carbon nanotubes/Ni for high-performance flexible strain sensor. Carbon, 2022, 194, 185-196.	10.3	23
6	Impact behavior of a high viscosity magnetorheological fluid-based energy absorber with a radial flow mode. Smart Materials and Structures, 2017, 26, 025025.	3.5	21
7	Modeling and testing of magnetorheological energy absorbers considering inertia effect with non-averaged acceleration under impact conditions. Smart Materials and Structures, 2018, 27, 115028.	3.5	18
8	Piezo-capacitive behavior of a magnetically structured particle-based conductive polymer with high sensitivity and a wide working range. Journal of Materials Chemistry C, 2018, 6, 5401-5411.	5.5	12
9	Effective design strategy for a high-viscosity magnetorheological fluid–based energy absorber with multi-stage radial flow mode. Journal of Intelligent Material Systems and Structures, 2019, 30, 127-139.	2.5	11
10	A comparative analysis of magnetorheological energy absorber models under impact conditions. Smart Materials and Structures, 2019, 28, 067001.	3.5	10
11	Tribo-material based on a magnetic polymeric composite for enhancing the performance of triboelectric nanogenerator. Nano Energy, 2020, 78, 105402.	16.0	10
12	Study of radial flow mode magnetorheological energy absorber with center drain hole. Smart Materials and Structures, 2018, 27, 105008.	3.5	9
13	A design methodology based on full dynamic model for magnetorheological energy absorber equipped with disc springs. Smart Materials and Structures, 2019, 28, 065020.	3.5	8
14	Analytical modeling and experimental verification for linearly gradient thickness disk springs. Thin-Walled Structures, 2021, 167, 108153.	5.3	8
15	Capacitive pressure-sensitive composites using nickel–silicone rubber: experiments and modeling. Smart Materials and Structures, 2017, 26, 075003.	3.5	7
16	A theoretical analysis on crush characteristics of corrugated tube under axial impact and experimental verification. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	6
17	ANFIS with input space division for modeling magnetorheological energy absorber. International Journal of Mechanical Sciences, 2022, 221, 107183.	6.7	4
18	Synthesis and rheological characteristics of high viscosity linear polysiloxane carrier fluid-based magnetorheological fluids. Smart Materials and Structures, 2022, 31, 015041.	3.5	3

#	Article	IF	CITATIONS
19	Study on sliding friction characteristics of magnetorheological elastomer—copper pair affected by magnetic-controlled surface roughness and elastic modulus. Smart Materials and Structures, 2022, 31, 015030.	3.5	3
20	Rapid control prototyping development of intelligent control system of vehicle semi-active suspension. , $2008, , .$		2
21	Capacitance creep and recovery behavior of magnetorheological elastomers. Journal of Intelligent Material Systems and Structures, 2020, , 1045389X2096991.	2.5	2
22	Unsteady extension of quasi-steady physical modeling and experimental verification of a magnetorheological energy absorber. Frontiers in Materials, 0, 9, .	2.4	1
23	Non-dimensional analysis of an unsteady flow in a magnetorheological damper. Physics of Fluids, 0, , .	4.0	1
24	Research on Vehicle Magneto-rheological Suspensions Vibration Control and Test. , 2006, , .		0
25	Attitude control for rapid robot with Human simulated intelligent control theory. , 2008, , .		0
26	A Dynamic Model and Parameter Identification of High Viscosity Magnetorheological Fluid-Based Energy Absorber with Radial Flow Mode. Molecules, 2021, 26, 7059.	3.8	0
27	Self-powered Vibration Detector for the Intelligent Vibration Control System Based on Triboelectric Nanogenerator., 2022,,.		О