Xingguo Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3275093/publications.pdf Version: 2024-02-01

		11651	19190
314	19,155	70	118
papers	citations	h-index	g-index
319	319	319	13768
all docs	docs citations	times ranked	citing authors

Χινοςμο Ηλν

#	Article	IF	CITATIONS
1	Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 2004, 431, 181-184.	27.8	1,011
2	Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands. Global Change Biology, 2010, 16, 358-372.	9.5	680
3	The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Scientific Data, 2020, 7, 225.	5.3	646
4	PRIMARY PRODUCTION AND RAIN USE EFFICIENCY ACROSS A PRECIPITATION GRADIENT ON THE MONGOLIA PLATEAU. Ecology, 2008, 89, 2140-2153.	3.2	593
5	Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 997-1008.	4.0	489
6	ECOLOGY: Three-Gorges Dam–Experiment in Habitat Fragmentation?. Science, 2003, 300, 1239-1240.	12.6	332
7	The Three Gorges Dam: an ecological perspective. Frontiers in Ecology and the Environment, 2004, 2, 241-248.	4.0	295
8	Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biology and Biochemistry, 2006, 38, 1101-1110.	8.8	271
9	Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability. Ecology Letters, 2010, 13, 1390-1399.	6.4	271
10	Grazing alters ecosystem functioning and <scp>C</scp> : <scp>N</scp> : <scp>P</scp> stoichiometry of grasslands along a regional precipitation gradient. Journal of Applied Ecology, 2012, 49, 1204-1215.	4.0	271
11	Grazing-induced reduction of natural nitrous oxide release from continental steppe. Nature, 2010, 464, 881-884.	27.8	254
12	Aridity threshold in controlling ecosystem nitrogen cycling in arid and semi-arid grasslands. Nature Communications, 2014, 5, 4799.	12.8	254
13	Nitrogen deposition weakens plant–microbe interactions in grassland ecosystems. Global Change Biology, 2013, 19, 3688-3697.	9.5	221
14	Habitat-specific patterns and drivers of bacterial β-diversity in China's drylands. ISME Journal, 2017, 11, 1345-1358.	9.8	218
15	Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. Journal of Applied Ecology, 2007, 44, 1023-1034.	4.0	217
16	Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling. Global Change Biology, 2010, 16, 1306-1316.	9.5	179
17	Stoichiometric homeostasis of vascular plants in the Inner Mongolia grassland. Oecologia, 2011, 166, 1-10.	2.0	171
18	Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland. Global Change Biology, 2013, 19, 2775-2784.	9.5	171

#	Article	IF	CITATIONS
19	A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 2016, 97, 65-74.	3.2	165
20	The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Annals of Botany, 2010, 105, 967-973.	2.9	155
21	Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biology and Biochemistry, 2008, 40, 2952-2959.	8.8	153
22	Higher precipitation strengthens the microbial interactions in semiâ€arid grassland soils. Global Ecology and Biogeography, 2018, 27, 570-580.	5.8	151
23	Restoration and Management of the Inner Mongolia Grassland Require a Sustainable Strategy. Ambio, 2006, 35, 269-270.	5.5	150
24	Genotypic differences in leaf biochemical, physiological and growth responses to ozone in 20 winter wheat cultivars released over the past 60 years. Global Change Biology, 2008, 14, 46-59.	9.5	149
25	Environmental changes drive the temporal stability of semiâ€arid natural grasslands through altering species asynchrony. Journal of Ecology, 2015, 103, 1308-1316.	4.0	143
26	Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 17867-17873.	7.1	141
27	Comparing physiological responses of two dominant grass species to nitrogen addition in Xilin River Basin of China. Environmental and Experimental Botany, 2005, 53, 65-75.	4.2	140
28	Ecosystem Traits Linking Functional Traits to Macroecology. Trends in Ecology and Evolution, 2019, 34, 200-210.	8.7	140
29	Nitrogen enrichment weakens ecosystem stability through decreased species asynchrony and population stability in a temperate grassland. Global Change Biology, 2016, 22, 1445-1455.	9.5	139
30	Energy balance and partition in Inner Mongolia steppe ecosystems with different land use types. Agricultural and Forest Meteorology, 2009, 149, 1800-1809.	4.8	138
31	Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 2014, 20, 3520-3529.	9.5	132
32	Soil carbon and nitrogen stores and storage potential as affected by land-use in an agro-pastoral ecotone of northern China. Biogeochemistry, 2007, 82, 127-138.	3.5	125
33	Non-Additive Effects of Water and Nitrogen Addition on Ecosystem Carbon Exchange in a Temperate Steppe. Ecosystems, 2009, 12, 915-926.	3.4	125
34	Nitrogen and water availability interact to affect leaf stoichiometry in a semi-arid grassland. Oecologia, 2012, 168, 301-310.	2.0	109
35	Plant Trait Networks: Improved Resolution of the Dimensionality of Adaptation. Trends in Ecology and Evolution, 2020, 35, 908-918.	8.7	107
36	Strategies to alleviate poverty and grassland degradation in Inner Mongolia: Intensification vs production efficiency of livestock systems. Journal of Environmental Management, 2015, 152, 177-182.	7.8	106

#	Article	IF	CITATIONS
37	Stoichiometric homeostasis predicts plant species dominance, temporal stability, and responses to global change. Ecology, 2015, 96, 2328-2335.	3.2	106
38	Nitrogen response efficiency increased monotonically with decreasing soil resource availability: a case study from a semiarid grassland in northern China. Oecologia, 2006, 148, 564-572.	2.0	105
39	N balance and cycling of Inner Mongolia typical steppe: a comprehensive case study of grazing effects. Ecological Monographs, 2013, 83, 195-219.	5.4	105
40	Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant and Soil, 2010, 327, 481-491.	3.7	104
41	Annual methane uptake by temperate semiarid steppes as regulated by stocking rates, aboveground plant biomass and topsoil air permeability. Global Change Biology, 2011, 17, 2803-2816.	9.5	103
42	Differential responses of litter decomposition to increased soil nutrients and water between two contrasting grassland plant species of Inner Mongolia, China. Applied Soil Ecology, 2006, 34, 266-275.	4.3	100
43	Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem. Oecologia, 2010, 162, 771-780.	2.0	98
44	Do rhizome severing and shoot defoliation affect clonal growth of Leymus chinensis at ramet population level?. Acta Oecologica, 2004, 26, 255-260.	1.1	94
45	Plasticity in leaf and stem nutrient resorption proficiency potentially reinforces plant–soil feedbacks and microscale heterogeneity in a semiâ€arid grassland. Journal of Ecology, 2012, 100, 144-150.	4.0	94
46	Aerobic Methane Emission from Plants in the Inner Mongolia Steppe. Environmental Science & Technology, 2008, 42, 62-68.	10.0	92
47	Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. Journal of Arid Environments, 2005, 63, 191-202.	2.4	90
48	Winter-grazing reduces methane uptake by soils of a typical semi-arid steppe in Inner Mongolia, China. Atmospheric Environment, 2007, 41, 5948-5958.	4.1	88
49	The counteractive effects of nitrogen addition and watering on soil bacterial communities in a steppe ecosystem. Soil Biology and Biochemistry, 2014, 72, 26-34.	8.8	88
50	Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands. FEMS Microbiology Ecology, 2015, 91, fiv133.	2.7	87
51	Environmental changes affect the assembly of soil bacterial community primarily by mediating stochastic processes. Global Change Biology, 2016, 22, 198-207.	9.5	87
52	Exacerbated nitrogen limitation ends transient stimulation of grassland productivity by increased precipitation. Ecological Monographs, 2017, 87, 457-469.	5.4	87
53	Responses of Soil Bacterial Communities to Nitrogen Deposition and Precipitation Increment Are Closely Linked with Aboveground Community Variation. Microbial Ecology, 2016, 71, 974-989.	2.8	86
54	China's new rural "separating three property rights―land reform results in grassland degradation: Evidence from Inner Mongolia. Land Use Policy, 2018, 71, 170-182.	5.6	86

#	Article	IF	CITATIONS
55	Plants alter their vertical root distribution rather than biomass allocation in response to changing precipitation. Ecology, 2019, 100, e02828.	3.2	86
56	Complementarity in water sources among dominant species in typical steppe ecosystems of Inner Mongolia, China. Plant and Soil, 2011, 340, 303-313.	3.7	84
57	Asymmetric sensitivity of ecosystem carbon and water processes in response to precipitation change in a semiâ€arid steppe. Functional Ecology, 2017, 31, 1301-1311.	3.6	84
58	Response of the Abundance of Key Soil Microbial Nitrogen-Cycling Genes to Multi-Factorial Global Changes. PLoS ONE, 2013, 8, e76500.	2.5	83
59	Predicting plant diversity based on remote sensing products in the semi-arid region of Inner Mongolia. Remote Sensing of Environment, 2008, 112, 2018-2032.	11.0	80
60	Mitigating methane emission from paddy soil with rice-straw biochar amendment under projected climate change. Scientific Reports, 2016, 6, 24731.	3.3	79
61	Respiratory substrate availability plays a crucial role in the response of soil respiration to environmental factors. Applied Soil Ecology, 2006, 32, 284-292.	4.3	78
62	N2O emission from the semi-arid ecosystem under mineral fertilizer (urea and superphosphate) and increased precipitation in northern China. Atmospheric Environment, 2008, 42, 291-302.	4.1	78
63	Changes in carbon and nitrogen in soil particle-size fractions along a grassland restoration chronosequence in northern China. Geoderma, 2009, 150, 302-308.	5.1	78
64	Methane emissions from the trunks of living trees on upland soils. New Phytologist, 2016, 211, 429-439.	7.3	78
65	Effects of longâ€ŧerm grazing on the morphological and functional traits of <i>Leymus chinensis</i> in the semiarid grassland of Inner Mongolia, China. Ecological Research, 2009, 24, 99-108.	1.5	77
66	Changes in litter quality induced by N deposition alter soil microbial communities. Soil Biology and Biochemistry, 2019, 130, 33-42.	8.8	77
67	Nitrogen Addition Regulates Soil Nematode Community Composition through Ammonium Suppression. PLoS ONE, 2012, 7, e43384.	2.5	77
68	Biophysical regulations of carbon fluxes of a steppe and a cultivated cropland in semiarid Inner Mongolia. Agricultural and Forest Meteorology, 2007, 146, 216-229.	4.8	75
69	Mechanisms of soil acidification reducing bacterial diversity. Soil Biology and Biochemistry, 2015, 81, 275-281.	8.8	75
70	Nonlinear responses of ecosystem carbon fluxes and waterâ€use efficiency to nitrogen addition in Inner Mongolia grassland. Functional Ecology, 2016, 30, 490-499.	3.6	75
71	Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation. Soil Biology and Biochemistry, 2017, 104, 18-29.	8.8	75
72	Nitrogen addition does not reduce the role of spatial asynchrony in stabilising grassland communities. Ecology Letters, 2019, 22, 563-571.	6.4	75

#	Article	IF	CITATIONS
73	Climate variability decreases species richness and community stability in a temperate grassland. Oecologia, 2018, 188, 183-192.	2.0	74
74	Land use affects the relationship between species diversity and productivity at the local scale in a semi-arid steppe ecosystem. Functional Ecology, 2006, 20, 753-762.	3.6	73
75	Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes. Agricultural and Forest Meteorology, 2009, 149, 1810-1819.	4.8	73
76	Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland. Scientific Reports, 2014, 4, 4817.	3.3	71
77	Mowing exacerbates the loss of ecosystem stability under nitrogen enrichment in a temperate grassland. Functional Ecology, 2017, 31, 1637-1646.	3.6	71
78	Microbial N Turnover and N-Oxide (N2O/NO/NO2) Fluxes in Semi-arid Grassland of Inner Mongolia. Ecosystems, 2007, 10, 623-634.	3.4	67
79	Soil characteristics and nitrogen resorption in Stipa krylovii native to northern China. Plant and Soil, 2005, 273, 257-268.	3.7	66
80	Seasonal variations in nitrogen mineralization under three land use types in a grassland landscape. Acta Oecologica, 2008, 34, 322-330.	1.1	65
81	On the Nature of Environmental Gradients: Temporal and Spatial Variability of Soils and Vegetation in the New Jersey Pinelands. Journal of Ecology, 1997, 85, 785.	4.0	64
82	Diurnal variation in methane emissions in relation to plants and environmental variables in the Inner Mongolia marshes. Atmospheric Environment, 2005, 39, 6295-6305.	4.1	64
83	Poplar plantation has the potential to alter the water balance in semiarid Inner Mongolia. Journal of Environmental Management, 2009, 90, 2762-2770.	7.8	64
84	Effects of Water and Nitrogen Addition on Species Turnover in Temperate Grasslands in Northern China. PLoS ONE, 2012, 7, e39762.	2.5	64
85	Asymmetry in above―and belowground productivity responses to N addition in a semiâ€arid temperate steppe. Global Change Biology, 2019, 25, 2958-2969.	9.5	63
86	Nonadditive effects of litter mixtures on decomposition and correlation with initial litter N and P concentrations in grassland plant species of northern China. Biology and Fertility of Soils, 2007, 44, 211-216.	4.3	62
87	Plant nutrients do not covary with soil nutrients under changing climatic conditions. Global Biogeochemical Cycles, 2015, 29, 1298-1308.	4.9	62
88	Hierarchical responses of plant stoichiometry to nitrogen deposition and mowing in a temperate steppe. Plant and Soil, 2014, 382, 175-187.	3.7	61
89	Plant functional diversity modulates global environmental change effects on grassland productivity. Journal of Ecology, 2018, 106, 1941-1951.	4.0	61
90	Differential responses of canopy nutrients to experimental drought along a natural aridity gradient. Ecology, 2018, 99, 2230-2239.	3.2	61

#	Article	IF	CITATIONS
91	Effects of grassland conversion to croplands on soil organic carbon in the temperate Inner Mongolia. Journal of Environmental Management, 2008, 86, 529-534.	7.8	59
92	Temporal and spatial variability and controls of soil respiration in a temperate steppe in northern China. Global Biogeochemical Cycles, 2010, 24, .	4.9	59
93	Effects of plant functional group loss on soil biota and net ecosystem exchange: a plant removal experiment in the Mongolian grassland. Journal of Ecology, 2016, 104, 734-743.	4.0	58
94	Feedback of grazing on gross rates of N mineralization and inorganic N partitioning in steppe soils of Inner Mongolia. Plant and Soil, 2011, 340, 127-139.	3.7	57
95	LIVE AND DEAD ROOTS IN FOREST SOIL HORIZONS:CONTRASTING EFFECTS ON NITROGEN DYNAMICS. Ecology, 1997, 78, 348-362.	3.2	56
96	Grazing intensity impacts soil carbon and nitrogen storage of continental steppe. Ecosphere, 2011, 2, art8.	2.2	56
97	Sampling Date, Leaf Age and Root Size: Implications for the Study of Plant C:N:P Stoichiometry. PLoS ONE, 2013, 8, e60360.	2.5	56
98	Effects of functional diversity loss on ecosystem functions are influenced by compensation. Ecology, 2016, 97, 2293-2302.	3.2	56
99	Effects of grazing and climate variability on grassland ecosystem functions in Inner Mongolia: Synthesis of a 6-year grazing experiment. Journal of Arid Environments, 2016, 135, 50-63.	2.4	56
100	Topography and grazing effects on storage of soil organic carbon and nitrogen in the northern China grasslands. Ecological Indicators, 2018, 93, 45-53.	6.3	56
101	Changing precipitation exerts greater influence on soil heterotrophic than autotrophic respiration in a semiarid steppe. Agricultural and Forest Meteorology, 2019, 271, 413-421.	4.8	56
102	Nitrogen fertilization and fire act independently on foliar stoichiometry in a temperate steppe. Plant and Soil, 2010, 334, 209-219.	3.7	55
103	Foliar nutrient resorption differs between arbuscular mycorrhizal and ectomycorrhizal trees at local and global scales. Global Ecology and Biogeography, 2018, 27, 875-885.	5.8	55
104	Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Global Change Biology, 2021, 27, 5976-5988.	9.5	55
105	Testing the Growth Rate Hypothesis in Vascular Plants with Above- and Below-Ground Biomass. PLoS ONE, 2012, 7, e32162.	2.5	55
106	Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink. Nature Communications, 2022, 13, 880.	12.8	55
107	Increase in ammonia volatilization from soil in response to N deposition in Inner Mongolia grasslands. Atmospheric Environment, 2014, 84, 156-162.	4.1	54
108	Increasing rates of longâ€ŧerm nitrogen deposition consistently increased litter decomposition in a semiâ€∎rid grassland. New Phytologist, 2021, 229, 296-307.	7.3	54

#	Article	IF	CITATIONS
109	Changes in specific leaf area of dominant plants in temperate grasslands along a 2500-km transect in northern China. Scientific Reports, 2017, 7, 10780.	3.3	53
110	Storage and Dynamics of Carbon and Nitrogen in Soil after Grazing Exclusion in <i>Leymus chinensis</i> Grasslands of Northern China. Journal of Environmental Quality, 2008, 37, 663-668.	2.0	52
111	Changes in carbon and nitrogen of Chernozem soil along a cultivation chronosequence in a semiâ€arid grassland. European Journal of Soil Science, 2009, 60, 916-923.	3.9	52
112	Climate and ecosystem ¹⁵ N natural abundance along a transect of Inner Mongolian grasslands: Contrasting regional patterns and global patterns. Global Biogeochemical Cycles, 2009, 23, .	4.9	52
113	Effects of experimentally-enhanced precipitation and nitrogen on resistance, recovery and resilience of a semi-arid grassland after drought. Oecologia, 2014, 176, 1187-1197.	2.0	52
114	Nitrogen deposition alters soil chemical properties and bacterial communities in the Inner Mongolia grassland. Journal of Environmental Sciences, 2012, 24, 1483-1491.	6.1	51
115	Eutrophication as a driver of microbial community structure in lake sediments. Environmental Microbiology, 2020, 22, 3446-3462.	3.8	51
116	Labile organic C and N mineralization of soil aggregate size classes in semiarid grasslands as affected by grazing management. Biology and Fertility of Soils, 2012, 48, 305-313.	4.3	50
117	Soil organic and inorganic carbon contents under various land uses across a transect of continental steppes in Inner Mongolia. Catena, 2013, 109, 110-117.	5.0	50
118	Salt tolerance during seed germination and early seedling stages of 12 halophytes. Plant and Soil, 2015, 388, 229-241.	3.7	50
119	Nutrient resorption helps drive intra-specific coupling of foliar nitrogen and phosphorus under nutrient-enriched conditions. Plant and Soil, 2016, 398, 111-120.	3.7	50
120	Physical injury stimulates aerobic methane emissions from terrestrial plants. Biogeosciences, 2009, 6, 615-621.	3.3	49
121	Effects of prescribed burning and seasonal and interannual climate variation on nitrogen mineralization in a typical steppe in Inner Mongolia. Soil Biology and Biochemistry, 2009, 41, 796-803.	8.8	49
122	Contrasting responses in leaf nutrient-use strategies of two dominant grass species along a 30-yr temperate steppe grazing exclusion chronosequence. Plant and Soil, 2015, 387, 69-79.	3.7	49
123	Methane Production Explained Largely by Water Content in the Heartwood of Living Trees in Upland Forests. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 2479-2489.	3.0	49
124	Soil Bacterial Communities Respond to Mowing and Nutrient Addition in a Steppe Ecosystem. PLoS ONE, 2013, 8, e84210.	2.5	49
125	Widespread non-microbial methane production by organic compounds and the impact of environmental stresses. Earth-Science Reviews, 2013, 127, 193-202.	9.1	48
126	Effects of nitrogen deposition rates and frequencies on the abundance of soil nitrogen-related functional genes in temperate grassland of northern China. Journal of Soils and Sediments, 2015, 15, 694-704.	3.0	48

#	Article	IF	CITATIONS
127	Productivity depends more on the rate than the frequency of N addition in a temperate grassland. Scientific Reports, 2015, 5, 12558.	3.3	47
128	Experimental warming reveals positive feedbacks to climate change in the Eurasian Steppe. ISME Journal, 2017, 11, 885-895.	9.8	47
129	Variation in small-scale spatial heterogeneity of soil properties and vegetation with different land use in semiarid grassland ecosystem. Plant and Soil, 2008, 310, 103-112.	3.7	46
130	Patterns of Plant Biomass Allocation in Temperate Grasslands across a 2500-km Transect in Northern China. PLoS ONE, 2013, 8, e71749.	2.5	46
131	Mitigation of nitrous oxide emissions from acidic soils by <i>Bacillus amyloliquefaciens</i> , a plant growthâ€promoting bacterium. Global Change Biology, 2018, 24, 2352-2365.	9.5	46
132	Effects of grazing on photosynthetic characteristics of major steppe species in the Xilin River Basin, Inner Mongolia, China. Photosynthetica, 2005, 43, 559-565.	1.7	45
133	Decreased plant productivity resulting from plant group removal experiment constrains soil microbial functional diversity. Global Change Biology, 2017, 23, 4318-4332.	9.5	45
134	Nitrogen and water addition reduce leaf longevity of steppe species. Annals of Botany, 2011, 107, 145-155.	2.9	44
135	Grazing Density Effects on Cover, Species Composition, and Nitrogen Fixation of Biological Soil Crust in an Inner Mongolia Steppe. Rangeland Ecology and Management, 2009, 62, 321-327.	2.3	43
136	Soil phosphorus fractions, aluminum, and water retention as affected by microbial activity in an Ultisol. Plant and Soil, 1990, 121, 125-136.	3.7	42
137	The Influence of Historical Land Use and Water Availability on Grassland Restoration. Restoration Ecology, 2010, 18, 217-225.	2.9	42
138	Species asynchrony stabilises productivity under extreme drought across Northern China grasslands. Journal of Ecology, 2021, 109, 1665-1675.	4.0	42
139	Nitrogen deposition promotes phosphorus uptake of plants in a semi-arid temperate grassland. Plant and Soil, 2016, 408, 475-484.	3.7	41
140	Carbon and nitrogen allocation shifts in plants and soils along aridity and fertility gradients in grasslands of China. Ecology and Evolution, 2017, 7, 6927-6934.	1.9	41
141	Plant responses following grazing removal at different stocking rates in an Inner Mongolia grassland ecosystem. Plant and Soil, 2011, 340, 199-213.	3.7	40
142	Warming and increased precipitation individually influence soil carbon sequestration of Inner Mongolian grasslands, China. Agriculture, Ecosystems and Environment, 2012, 158, 184-191.	5.3	40
143	Contrasting pH buffering patterns in neutral-alkaline soils along a 3600 km transect in northern China. Biogeosciences, 2015, 12, 7047-7056.	3.3	40
144	Variations in life-form composition and foliar carbon isotope discrimination among eight plant communities under different soil moisture conditions in the Xilin River Basin, Inner Mongolia, China. Ecological Research, 2005, 20, 167-176.	1.5	39

#	Article	IF	CITATIONS
145	Importance of point sources on regional nitrous oxide fluxes in semi-arid steppe of Inner Mongolia, China. Plant and Soil, 2007, 296, 209-226.	3.7	39
146	Divergent Changes in Plant Community Composition under 3-Decade Grazing Exclusion in Continental Steppe. PLoS ONE, 2011, 6, e26506.	2.5	39
147	Nutrient resorption response to fire and nitrogen addition in a semi-arid grassland. Ecological Engineering, 2011, 37, 534-538.	3.6	39
148	Effect of nitrogen fertilization on net nitrogen mineralization in a grassland soil, northern China. Grass and Forage Science, 2012, 67, 219-230.	2.9	39
149	Increased precipitation induces a positive plant-soil feedback in a semi-arid grassland. Plant and Soil, 2015, 389, 211-223.	3.7	39
150	Lack of Evidence for 3/4 Scaling of Metabolism in Terrestrial Plants. Journal of Integrative Plant Biology, 2005, 47, 1173-1183.	8.5	38
151	Quantitative assessment of bioenergy from crop stalk resources in Inner Mongolia, China. Applied Energy, 2012, 93, 305-318.	10.1	38
152	Soil gross N ammonification and nitrification from tropical to temperate forests in eastern China. Functional Ecology, 2018, 32, 83-94.	3.6	38
153	Arbuscular mycorrhizal fungi regulate soil respiration and its response to precipitation change in a semiarid steppe. Scientific Reports, 2016, 6, 19990.	3.3	37
154	Homeâ€field advantages of litter decomposition increase with increasing N deposition rates: a litter and soil perspective. Functional Ecology, 2017, 31, 1792-1801.	3.6	36
155	Nonlinear responses of soil nematode community composition to increasing aridity. Global Ecology and Biogeography, 2020, 29, 117-126.	5.8	36
156	Land use and drought interactively affect interspecific competition and species diversity at the local scale in a semiarid steppe ecosystem. Ecological Research, 2009, 24, 627-635.	1.5	35
157	Nitrogen deposition mediates the effects and importance of chance in changing biodiversity. Molecular Ecology, 2011, 20, 429-438.	3.9	35
158	Effects of extreme drought on plant nutrient uptake and resorption in rhizomatous vs bunchgrass-dominated grasslands. Oecologia, 2018, 188, 633-643.	2.0	35
159	Plant traits and soil fertility mediate productivity losses under extreme drought in C ₃ grasslands. Ecology, 2021, 102, e03465.	3.2	35
160	Community response of arbuscular mycorrhizal fungi to extreme drought in a coldâ€ŧemperate grassland. New Phytologist, 2022, 234, 2003-2017.	7.3	35
161	Nitrogen enrichment buffers phosphorus limitation by mobilizing mineralâ€bound soil phosphorus in grasslands. Ecology, 2022, 103, e3616.	3.2	35
162	Seasonality of soil microbial nitrogen turnover in continental steppe soils of Inner Mongolia. Ecosphere, 2012, 3, 1-18.	2.2	34

#	Article	IF	CITATIONS
163	Scale dependence of the diversity–stability relationship in a temperate grassland. Journal of Ecology, 2018, 106, 1277-1285.	4.0	33
164	Effects of irrigation on nitrous oxide, methane and carbon dioxide fluxes in an Inner Mongolian steppe. Advances in Atmospheric Sciences, 2008, 25, 748-756.	4.3	32
165	Plant species effects on soil carbon and nitrogen dynamics in a temperate steppe of northern China. Plant and Soil, 2011, 346, 331-347.	3.7	32
166	Rapid top–down regulation of plant C:N:P stoichiometry by grasshoppers in an Inner Mongolia grassland ecosystem. Oecologia, 2011, 166, 253-264.	2.0	32
167	Intra-seasonal precipitation amount and pattern differentially affect primary production of two dominant species of Inner Mongolia grassland. Acta Oecologica, 2012, 44, 2-10.	1.1	32
168	Experimentally increased water and nitrogen affect root production and vertical allocation of an old-field grassland. Plant and Soil, 2017, 412, 369-380.	3.7	32
169	China's grazed temperate grasslands are a net source of atmospheric methane. Atmospheric Environment, 2009, 43, 2148-2153.	4.1	31
170	The Grasslands of Inner Mongolia: A Special Feature. Rangeland Ecology and Management, 2009, 62, 303-304.	2.3	31
171	Plant carbon limitation does not reduce nitrogen transfer from arbuscular mycorrhizal fungi to Plantago lanceolata. Plant and Soil, 2015, 396, 369-380.	3.7	31
172	Differences in below-ground bud bank density and composition along a climatic gradient in the temperate steppe of northern China. Annals of Botany, 2017, 120, 755-764.	2.9	31
173	Depth profiles of soil carbon isotopes along a semi-arid grassland transect in northern China. Plant and Soil, 2017, 417, 43-52.	3.7	31
174	Long term experimental drought alters community plant trait variation, not trait means, across three semiarid grasslands. Plant and Soil, 2019, 442, 343-353.	3.7	31
175	Foliar Nitrogen Dynamics and Nitrogen Resorption of a Sandy Shrub Salix gordejevii in Northern China. Plant and Soil, 2005, 278, 183-193.	3.7	30
176	Carbon and nitrogen storage in plant and soil as related to nitrogen and water amendment in a temperate steppe of northern China. Biology and Fertility of Soils, 2011, 47, 187-196.	4.3	30
177	Stoichiometric response of dominant grasses to fire and mowing in a semi-arid grassland. Journal of Arid Environments, 2012, 78, 154-160.	2.4	30
178	Testing biodiversity-ecosystem functioning relationship in the world's largest grassland: overview of the IMGRE project. Landscape Ecology, 2015, 30, 1723-1736.	4.2	30
179	Thresholds in decoupled soil-plant elements under changing climatic conditions. Plant and Soil, 2016, 409, 159-173.	3.7	30
180	Methane emission from small wetlands and implications for semiarid region budgets. Journal of Geophysical Research, 2005, 110, .	3.3	29

#	Article	IF	CITATIONS
181	Effects of grazing exclusion on soil net nitrogen mineralization and nitrogen availability in a temperate steppe in northern China. Journal of Arid Environments, 2010, 74, 1287-1293.	2.4	29
182	Carbon and nitrogen contents in particle–size fractions of topsoil along a 3000†km aridity gradient in grasslands of northern China. Biogeosciences, 2016, 13, 3635-3646.	3.3	29
183	A threshold reveals decoupled relationship of sulfur with carbon and nitrogen in soils across arid and semi-arid grasslands in northern China. Biogeochemistry, 2016, 127, 141-153.	3.5	29
184	Largeâ€Scale Distribution of Molecular Components in Chinese Grassland Soils: The Influence of Input and Decomposition Processes. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 239-255.	3.0	29
185	Response of fine root decomposition to different forms of N deposition in a temperate grassland. Soil Biology and Biochemistry, 2020, 147, 107845.	8.8	29
186	Grasshoppers Regulate N:P Stoichiometric Homeostasis by Changing Phosphorus Contents in Their Frass. PLoS ONE, 2014, 9, e103697.	2.5	29
187	Competition between Artemisia frigida and Cleistogenes squarrosa under different clipping intensities in replacement series mixtures at different nitrogen levels. Grass and Forage Science, 2005, 60, 119-127.	2.9	28
188	Isotopic carbon composition and related characters of dominant species along an environmental gradient in Inner Mongolia, China. Journal of Arid Environments, 2007, 71, 12-28.	2.4	28
189	Growing season methane budget of an Inner Mongolian steppe. Atmospheric Environment, 2009, 43, 3086-3095.	4.1	28
190	Distinct Drivers of Core and Accessory Components of Soil Microbial Community Functional Diversity under Environmental Changes. MSystems, 2019, 4, .	3.8	28
191	Soil microbial community responses to long-term nitrogen addition at different soil depths in a typical steppe. Applied Soil Ecology, 2021, 167, 104054.	4.3	28
192	Assessment of a phosphorus fractionation method for soils: problems for further investigation. Agriculture, Ecosystems and Environment, 1991, 34, 453-463.	5.3	27
193	Ecological consequences of the Three Gorges Dam: insularization affects foraging behavior and dynamics of rodent populations. Frontiers in Ecology and the Environment, 2010, 8, 13-19.	4.0	27
194	Hierarchical Plant Responses and Diversity Loss after Nitrogen Addition: Testing Three Functionally-Based Hypotheses in the Inner Mongolia Grassland. PLoS ONE, 2011, 6, e20078.	2.5	27
195	Land-use impact on soil carbon and nitrogen sequestration in typical steppe ecosystems, Inner Mongolia. Journal of Chinese Geography, 2012, 22, 859-873.	3.9	27
196	Carbon dioxide emission from temperate semiarid steppe during the non-growing season. Atmospheric Environment, 2013, 64, 141-149.	4.1	27
197	Intensity and frequency of nitrogen addition alter soil chemical properties depending on mowing management in a temperate steppe. Journal of Environmental Management, 2018, 224, 77-86.	7.8	27
198	The effects of biomass removal and N additions on microbial N transformations and biomass at different vegetation types in an old-field ecosystem in northern China. Plant and Soil, 2011, 340, 397-411.	3.7	26

#	Article	IF	CITATIONS
199	Soil Bacterial Communities Respond to Climate Changes in a Temperate Steppe. PLoS ONE, 2013, 8, e78616.	2.5	26
200	Effects of mistletoe removal on growth, N and C reserves, and carbon and oxygen isotope composition in Scots pine hosts. Tree Physiology, 2016, 36, 562-575.	3.1	26
201	Fewer new species colonize at low frequency N addition in a temperate grassland. Functional Ecology, 2016, 30, 1247-1256.	3.6	25
202	Variations in leaf carbon isotope composition along an arid and semi-arid grassland transect in northern China. Journal of Plant Ecology, 2016, 9, 576-585.	2.3	25
203	Grassland species respond differently to altered precipitation amount and pattern. Environmental and Experimental Botany, 2017, 137, 166-176.	4.2	25
204	The role of plant–soil feedbacks and landâ€use legacies in restoration of a temperate steppe in northern China. Ecological Research, 2010, 25, 1101-1111.	1.5	24
205	Restoring the degraded grassland and improving sustainability of grassland ecosystem through chicken farming: A case study in northern China. Agriculture, Ecosystems and Environment, 2014, 186, 115-123.	5.3	24
206	Stochastic processes play more important roles in driving the dynamics of rarer species. Journal of Plant Ecology, 2016, 9, 328-332.	2.3	24
207	Abiotic versus biotic controls on soil nitrogen cycling in drylands along a 3200†km transect. Biogeosciences, 2017, 14, 989-1001.	3.3	24
208	Effect of intermediate disturbance on soil microbial functional diversity depends on the amount of effective resources. Environmental Microbiology, 2018, 20, 3862-3875.	3.8	24
209	Annual methane uptake by typical semiarid steppe in Inner Mongolia. Journal of Geophysical Research, 2010, 115, .	3.3	23
210	Antithetical effects of nitrogen and water availability on community similarity of semiarid grasslands: evidence from a nine-year manipulation experiment. Plant and Soil, 2015, 397, 357-369.	3.7	23
211	Steppe ecosystems and climate and land-use changes—vulnerability, feedbacks and possibilities for adaptation. Plant and Soil, 2011, 340, 1-6.	3.7	22
212	The carbon sequestration potential of China's grasslands. Ecosphere, 2018, 9, e02452.	2.2	22
213	Aerobic and Anaerobic Nonmicrobial Methane Emissions from Plant Material. Environmental Science & Technology, 2011, 45, 9531-9537.	10.0	21
214	Facilitation by leguminous shrubs increases along a precipitation gradient. Functional Ecology, 2018, 32, 203-213.	3.6	21
215	Application of two remote sensing GPP algorithms at a semiarid grassland site of North China. Journal of Plant Ecology, 2011, 4, 302-312.	2.3	20
216	The impacts of nitrogen deposition on community N:P stoichiometry do not depend on phosphorus availability in a temperate meadow steppe. Environmental Pollution, 2018, 242, 82-89.	7.5	20

#	Article	IF	CITATIONS
217	Species responses to changing precipitation depend on trait plasticity rather than trait means and intraspecific variation. Functional Ecology, 2020, 34, 2622-2633.	3.6	20
218	Dynamics and allocation of recently photo-assimilated carbon in an Inner Mongolia temperate steppe. Environmental and Experimental Botany, 2007, 59, 1-10.	4.2	19
219	Spatial patterns of soil nutrients, plant diversity, and aboveground biomass in the Inner Mongolia grassland: before and after a biodiversity removal experiment. Landscape Ecology, 2015, 30, 1737-1750.	4.2	19
220	Methane emission patches in riparian marshes of the inner Mongolia. Atmospheric Environment, 2006, 40, 5528-5532.	4.1	18
221	A change of course: JIPB to focus on fundamental questions in plant sciences. Journal of Integrative Plant Biology, 2008, 50, 1-1.	8.5	18
222	Plant functional group removal alters root biomass and nutrient cycling in a typical steppe in Inner Mongolia, China. Plant and Soil, 2011, 346, 133-144.	3.7	18
223	Terrestrial Contributions to the Aquatic Food Web in the Middle Yangtze River. PLoS ONE, 2014, 9, e102473.	2.5	18
224	Nitrogen addition and mowing affect microbial nitrogen transformations in a <scp>C4</scp> grassland in northern <scp>C</scp> hina. European Journal of Soil Science, 2015, 66, 485-495.	3.9	18
225	Distribution of lignin phenols in comparison with plant-derived lipids in the alpine versus temperate grassland soils. Plant and Soil, 2019, 439, 325-338.	3.7	18
226	Variant Scaling Relationship for Mass-Density Across Tree-Dominated Communities. Journal of Integrative Plant Biology, 2006, 48, 268-277.	8.5	17
227	Responses of nutrient concentrations and stoichiometry of senesced leaves in dominant plants to nitrogen addition and prescribed burning in a temperate steppe. Ecological Engineering, 2014, 70, 154-161.	3.6	17
228	Higher capability of C3 than C4 plants to use nitrogen inferred from nitrogen stable isotopes along an aridity gradient. Plant and Soil, 2018, 428, 93-103.	3.7	17
229	Effects of nitrogen addition on plant-soil micronutrients vary with nitrogen form and mowing management in a meadow steppe. Environmental Pollution, 2021, 289, 117969.	7.5	17
230	Effects of <i>in situ</i> freezing on soil net nitrogen mineralization and net nitrification in fertilized grassland of northern China. Grass and Forage Science, 2011, 66, 391-401.	2.9	16
231	Hierarchical Reproductive Allocation and Allometry within a Perennial Bunchgrass after 11 Years of Nutrient Addition. PLoS ONE, 2012, 7, e42833.	2.5	16
232	Impacts of leguminous shrub encroachment on neighboring grasses include transfer of fixed nitrogen. Oecologia, 2016, 180, 1213-1222.	2.0	16
233	Plant–bacteria–soil response to frequency of simulated nitrogen deposition has implications for global ecosystem change. Functional Ecology, 2020, 34, 723-734.	3.6	16
234	Resistance of steppe communities to extreme drought in northeast China. Plant and Soil, 2020, , 1.	3.7	16

#	Article	IF	CITATIONS
235	Financial inclusion may limit sustainable development under economic globalization and climate change. Environmental Research Letters, 2021, 16, 054049.	5.2	16
236	Variations in δ13C values among major plant community types in the Xilin River Basin, Inner Mongolia, China. Australian Journal of Botany, 2007, 55, 48.	0.6	15
237	Litter Decomposition in Semiarid Grassland of Inner Mongolia, China. Rangeland Ecology and Management, 2009, 62, 305-313.	2.3	15
238	Long-term mowing did not alter the impacts of nitrogen deposition on litter quality in a temperate steppe. Ecological Engineering, 2017, 102, 404-410.	3.6	15
239	Quantifying the indirect effects of nitrogen deposition on grassland litter chemical traits. Biogeochemistry, 2018, 139, 261-273.	3.5	15
240	Vertical variations in plant- and microbial-derived carbon components in grassland soils. Plant and Soil, 2020, 446, 441-455.	3.7	15
241	Aridity thresholds of soil microbial metabolic indices along a 3,200 km transect across arid and semi-arid regions in Northern China. PeerJ, 2019, 7, e6712.	2.0	15
242	Effect of Nitrogen Supply on the Nitrogen Use Efficiency of an Annual Herb, Helianthus annuus L Journal of Integrative Plant Biology, 2005, 47, 539-548.	8.5	14
243	A new approach to the fight against desertification in Inner Mongolia. Environmental Conservation, 2007, 34, 95-97.	1.3	14
244	Influences of land use history and short-term nitrogen addition on community structure in temperate grasslands. Journal of Arid Environments, 2012, 87, 103-109.	2.4	14
245	Distribution and Preservation of Root―and Shootâ€Derived Carbon Components in Soils Across the Chineseâ€Mongolian Grasslands. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 420-431.	3.0	14
246	Differential responses of grassland community nonstructural carbohydrate to experimental drought along a natural aridity gradient. Science of the Total Environment, 2022, 822, 153589.	8.0	14
247	Defoliation, nitrogen, and competition: effects on plant growth and resource allocation ofCleistogenes squarrosa andArtemisia frigida. Journal of Plant Nutrition and Soil Science, 2007, 170, 115-122.	1.9	13
248	Comparisons in water relations of plants between newly formed riparian and non-riparian habitats along the bank of Three Gorges Reservoir, China. Trees - Structure and Function, 2008, 22, 717-728.	1.9	13
249	Biophysical regulations of NEE light response in a steppe and a cropland in Inner Mongolia. Journal of Plant Ecology, 2012, 5, 238-248.	2.3	13
250	Long term prevention of disturbance induces the collapse of a dominant species without altering ecosystem function. Scientific Reports, 2015, 5, 14320.	3.3	13
251	Effect of soil coarseness on soil base cations and available micronutrients in a semi-arid sandy grassland. Solid Earth, 2016, 7, 549-556.	2.8	13
252	Environmental filtering rather than phylogeny determines plant leaf size in three floristically distinctive plateaus. Ecological Indicators, 2021, 130, 108049.	6.3	13

#	Article	IF	CITATIONS
253	Energy balance and partitioning over grasslands on the Mongolian Plateau. Ecological Indicators, 2022, 135, 108560.	6.3	13
254	Studies on litter decomposition processes in a temperate forest ecosystem. I. Change of organic matter in oak (Quercus liaotungensis Koidz.) twigs. Ecological Research, 1998, 13, 163-170.	1.5	12
255	Sheepfolds as "hotspots―of nitric oxide (NO) emission in an Inner Mongolian steppe. Agriculture, Ecosystems and Environment, 2009, 134, 136-142.	5.3	12
256	Effects of the frequency and the rate of N enrichment on community structure in a temperate grassland. Journal of Plant Ecology, 2018, 11, 685-695.	2.3	12
257	Variation in nitrogen economy of two Stipa species in the semiarid region of northern China. Journal of Arid Environments, 2005, 61, 13-25.	2.4	11
258	Structural and chemical differences between shoot- and root-derived roots of three perennial grasses in a typical steppe in Inner Mongolia China. Plant and Soil, 2010, 336, 209-217.	3.7	11
259	Water Content Differences Have Stronger Effects than Plant Functional Groups on Soil Bacteria in a Steppe Ecosystem. PLoS ONE, 2014, 9, e115798.	2.5	11
260	Environmental and spatial variables determine the taxonomic but not functional structure patterns of microbial communities in alpine grasslands. Science of the Total Environment, 2019, 654, 960-968.	8.0	11
261	Contrasting community responses of root and soil dwelling fungi to extreme drought in a temperate grassland. Soil Biology and Biochemistry, 2022, 169, 108670.	8.8	11
262	The effects of live and dead roots on soil fungi in spodosolic soils of the New Jersey Pinelands. Biology and Fertility of Soils, 1996, 21, 215-226.	4.3	10
263	N:P stoichiometry in Ficus racemosa and its mutualistic pollinator. Journal of Plant Ecology, 2010, 3, 123-130.	2.3	10
264	Ammonia emissions from soil under sheep grazing in inner mongolian grasslands of China. Journal of Arid Land, 2013, 5, 155-165.	2.3	10
265	Chronic and intense droughts differentially influence grassland carbon-nutrient dynamics along a natural aridity gradient. Plant and Soil, 2022, 473, 137-148.	3.7	10
266	Biodiversity–productivity relationships in a natural grassland community vary under diversity loss scenarios. Journal of Ecology, 2022, 110, 210-220.	4.0	10
267	Biogeography of soil protistan consumer and parasite is contrasting and linked to microbial nutrient mineralization in forest soils at a wide-scale. Soil Biology and Biochemistry, 2022, 165, 108513.	8.8	10
268	Low carbon availability in paleosols nonlinearly attenuates temperature sensitivity of soil organic matter decomposition. Global Change Biology, 2022, 28, 4180-4193.	9.5	10
269	Variations in the Volatile Organic Compound Emission Potential of Plant Functional Groups in the Temperate Grassland Vegetation of Inner Mongolia, China. Journal of Integrative Plant Biology, 2005, 47, 13-19.	8.5	9
270	Losses in Carbon and Nitrogen Stocks in Soil Particleâ€Size Fractions along Cultivation Chronosequences in Inner Mongolian Grasslands. Journal of Environmental Quality, 2012, 41, 1507-1516.	2.0	9

#	Article	IF	CITATIONS
271	Responses and sensitivity of N, P and mobile carbohydrates of dominant species to increased water, N and P availability in semi-arid grasslands in northern China. Journal of Plant Ecology, 2016, , rtw053.	2.3	9
272	Dissolved methane in groundwater of domestic wells and its potential emissions in arid and semi-arid regions of Inner Mongolia, China. Science of the Total Environment, 2018, 626, 1193-1199.	8.0	9
273	Spatial patterns and ecological drivers of soil nematode <i>î²</i> â€diversity in natural grasslands vary among vegetation types and trophic position. Journal of Animal Ecology, 2021, 90, 1367-1378.	2.8	9
274	Applications of stable isotopes to study plant-animal relationships in terrestrial ecosystems. Science Bulletin, 2004, 49, 2339-2347.	1.7	8
275	Temporal variability of foliar nutrients: responses to nitrogen deposition and prescribed fire in a temperate steppe. Biogeochemistry, 2017, 133, 295-305.	3.5	8
276	Consistent responses of litter stoichiometry to N addition across different biological organization levels in a semi-arid grassland. Plant and Soil, 2017, 421, 191-202.	3.7	8
277	Population turnover promotes fungal stability in a semi-arid grassland under precipitation shifts. Journal of Plant Ecology, 2020, 13, 499-509.	2.3	8
278	Sensitivity of soil nitrifying and denitrifying microorganisms to nitrogen deposition on the Qinghai–Tibetan plateau. Annals of Microbiology, 2021, 71, .	2.6	8
279	Soil moisture, temperature and nitrogen availability interactively regulate carbon exchange in a meadow steppe ecosystem. Agricultural and Forest Meteorology, 2021, 304-305, 108389.	4.8	8
280	Intensity and Duration of Nitrogen Addition Jointly Alter Soil Nutrient Availability in a Temperate Grassland. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	8
281	Interactive effects of soil nitrogen and water availability on leaf mass loss in a temperate steppe. Plant and Soil, 2010, 331, 497-504.	3.7	7
282	BVOCs emission in a semi-arid grassland under climate warming and nitrogen deposition. Atmospheric Chemistry and Physics, 2012, 12, 3809-3819.	4.9	7
283	Linking ethylene to nitrogen-dependent leaf longevity of grass species in a temperate steppe. Annals of Botany, 2013, 112, 1879-1885.	2.9	7
284	Alteration of soil carbon and nitrogen pools and enzyme activities as affected by increased soil coarseness. Biogeosciences, 2017, 14, 2155-2166.	3.3	7
285	Mowing increased plant diversity but not soil microbial biomass under N-enriched environment in a temperate grassland. Plant and Soil, 2023, 491, 205-217.	3.7	7
286	Ecosystem stability in Inner Mongolia (reply). Nature, 2005, 435, E6-E7.	27.8	6
287	Differences in Net Primary Productivity Among Contrasting Habitats in Artemisia ordosica Rangeland of Northern China. Rangeland Ecology and Management, 2009, 62, 345-350.	2.3	6
288	Microbial versus non-microbial methane releases from fresh soils at different temperatures. Geoderma, 2016, 284, 178-184.	5.1	6

#	Article	IF	CITATIONS
289	Frequency and intensity of nitrogen addition alter soil inorganic sulfur fractions, but the effects vary with mowing management in a temperate steppe. Biogeosciences, 2019, 16, 2891-2904.	3.3	6
290	Sediment addition and legume cultivation result in sustainable, longâ€ŧerm increases in ecosystem functions of sandy grasslands. Land Degradation and Development, 2019, 30, 1667-1676.	3.9	5
291	Disturbance-level-dependent post-disturbance succession in a Eurasian steppe. Science China Life Sciences, 2022, 65, 142-150.	4.9	5
292	Effects of plant intraspecific variation on the prediction of C3/C4 vegetation ratio from carbon isotope composition of topsoil organic matter across grasslands. Journal of Plant Ecology, 2021, 14, 628-637.	2.3	5
293	Intraâ€∎nnual species gain overrides species loss in determining species richness in a typical steppe ecosystem after a decade of nitrogen enrichment. Journal of Ecology, 2022, 110, 1942-1956.	4.0	5
294	Linking stoichiometric homeostasis with ecosystem structure, functioning, and stability. Nature Precedings, 2010, , .	0.1	4
295	Effects of Nitrogen Addition and Fire on Plant Nitrogen Use in a Temperate Steppe. PLoS ONE, 2014, 9, e90057.	2.5	4
296	Distinctive pattern and mechanism of precipitation changes affecting soil microbial assemblages in the Eurasian steppe. IScience, 2022, 25, 103893.	4.1	4
297	Redox Zone and Trophic State as Drivers of Methane-Oxidizing Bacterial Abundance and Community Structure in Lake Sediments. Frontiers in Environmental Science, 2022, 10, .	3.3	4
298	Long-term preservation of biomolecules in lake sediments: potential importance of physical shielding by recalcitrant cell walls. , 2022, 1, .		4
299	Beneficial effects of nitrogen deposition on carbon and nitrogen accumulation in grasses over other species in Inner Mongolian grasslands. Global Ecology and Conservation, 2021, 26, e01507.	2.1	3
300	Typical Steppe Ecosystem. Ecosystems of China, 2020, , 193-248.	0.1	3
301	Greater soil microbial biomass loss at low frequency of N addition in an Inner Mongolia grassland. Journal of Plant Ecology, 2022, 15, 721-732.	2.3	3
302	Live and Dead Roots in Forest Soil Horizons: Contrasting Effects on Nitrogen Dynamics. Ecology, 1997, 78, 348.	3.2	2
303	Applications of stable isotopes to study plant-animal relationships in terrestrial ecosystems. Science Bulletin, 2004, 49, 2339.	1.7	2
304	Bi-national research and education cooperation in the U.SChina EcoPartnership for Environmental Sustainability. Journal of Renewable and Sustainable Energy, 2015, 7, 041512.	2.0	2
305	Evident elevation of atmospheric monoterpenes due to degradation-induced species changes in a semi-arid grassland. Science of the Total Environment, 2016, 541, 1499-1503.	8.0	2
306	Leaf Multi-Element Network Reveals the Change of Species Dominance Under Nitrogen Deposition. Frontiers in Plant Science, 2021, 12, 580340.	3.6	2

#	Article	IF	CITATIONS
307	Different deterministic versus stochastic drivers for the composition and structure of a temperate grassland community. Global Ecology and Conservation, 2021, 31, e01866.	2.1	2
308	Overview of Chinese Grassland Ecosystems. Ecosystems of China, 2020, , 23-47.	0.1	2
309	Major advances in plant ecology research in China (2020). Journal of Plant Ecology, 2021, 14, 995-1001.	2.3	1
310	Slow recovery of soil methane oxidation potential after cessation of N addition in a typical steppe. Pedobiologia, 2021, 85-86, 150709.	1.2	0
311	Nitrogen enrichment affects the competition network of aboveground species on the Inner Mongolia steppe. Global Ecology and Conservation, 2021, 31, e01826.	2.1	0
312	Nitrogen deposition influences the response of Potentilla tanacetifolia to phosphorus addition. Phyton, 2016, 85, 100-107.	0.7	0
313	Tussock and Savanna Ecosystems. Ecosystems of China, 2020, , 545-583.	0.1	0
314	Marsh Grassland Ecosystem. Ecosystems of China, 2020, , 515-544.	0.1	0