List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3275023/publications.pdf Version: 2024-02-01



IVNN MODDIS

| #  | Article                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Differential V2-directed antibody responses in non-human primates infected with SHIVs or immunized with diverse HIV vaccines. Nature Communications, 2022, 13, 903.                                                                                                               | 12.8 | 7         |
| 2  | Infection of Chinese Rhesus Monkeys with a Subtype C SHIV Resulted in Attenuated In Vivo Viral Replication Despite Successful Animal-to-Animal Serial Passages. Viruses, 2021, 13, 397.                                                                                           | 3.3  | 1         |
| 3  | Elicitation of Neutralizing Antibody Responses to HIV-1 Immunization with Nanoparticle Vaccine<br>Platforms. Viruses, 2021, 13, 1296.                                                                                                                                             | 3.3  | 3         |
| 4  | mRNA vaccines offer hope for HIV. Nature Medicine, 2021, 27, 2082-2084.                                                                                                                                                                                                           | 30.7 | 9         |
| 5  | Neutralization Breadth and Potency of Single-Chain Variable Fragments Derived from Broadly<br>Neutralizing Antibodies Targeting Multiple Epitopes on the HIV-1 Envelope. Journal of Virology, 2020,<br>94, .                                                                      | 3.4  | 15        |
| 6  | The complex challenges of HIV vaccine development require renewed and expanded global commitment. Lancet, The, 2020, 395, 384-388.                                                                                                                                                | 13.7 | 44        |
| 7  | HIV-1 re-suppression on a first-line regimen despite the presence of phenotypic drug resistance. PLoS<br>ONE, 2020, 15, e0234937.                                                                                                                                                 | 2.5  | 3         |
| 8  | Safety and immune responses after a 12-month booster in healthy HIV-uninfected adults in HVTN 100 in<br>South Africa: AÂrandomized double-blind placebo-controlled trial of ALVAC-HIV (vCP2438) and bivalent<br>subtype C gp120/MF59 vaccines. PLoS Medicine, 2020, 17, e1003038. | 8.4  | 27        |
| 9  | Structure of Super-Potent Antibody CAP256-VRC26.25 in Complex with HIV-1 Envelope Reveals a Combined Mode of Trimer-Apex Recognition. Cell Reports, 2020, 31, 107488.                                                                                                             | 6.4  | 53        |
| 10 | HIV-1 re-suppression on a first-line regimen despite the presence of phenotypic drug resistance. , 2020, 15, e0234937.                                                                                                                                                            |      | 0         |
| 11 | HIV-1 re-suppression on a first-line regimen despite the presence of phenotypic drug resistance. , 2020, 15, e0234937.                                                                                                                                                            |      | 0         |
| 12 | HIV-1 re-suppression on a first-line regimen despite the presence of phenotypic drug resistance. , 2020, 15, e0234937.                                                                                                                                                            |      | 0         |
| 13 | HIV-1 re-suppression on a first-line regimen despite the presence of phenotypic drug resistance. , 2020, 15, e0234937.                                                                                                                                                            |      | 0         |
| 14 | Somatic hypermutation to counter a globally rare viral immunotype drove off-track antibodies in the CAP256-VRC26 HIV-1 V2-directed bNAb lineage. PLoS Pathogens, 2019, 15, e1008005.                                                                                              | 4.7  | 6         |
| 15 | Trends in Pretreatment HIV-1 Drug Resistance in Antiretroviral Therapy-naive Adults in South Africa,<br>2000–2016: A Pooled Sequence Analysis. EClinicalMedicine, 2019, 9, 26-34.                                                                                                 | 7.1  | 51        |
| 16 | High-Throughput Mapping of B Cell Receptor Sequences to Antigen Specificity. Cell, 2019, 179, 1636-1646.e15.                                                                                                                                                                      | 28.9 | 219       |
| 17 | Engineered HIV antibody passes muster. Lancet HIV,the, 2019, 6, e641-e642.                                                                                                                                                                                                        | 4.7  | 1         |
| 18 | Positive Selection at Key Residues in the HIV Envelope Distinguishes Broad and Strain-Specific Plasma<br>Neutralizing Antibodies. Journal of Virology, 2019, 93, .                                                                                                                | 3.4  | 13        |

| #  | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | V2-Directed Vaccine-like Antibodies from HIV-1 Infection Identify an Additional K169-Binding Light Chain<br>Motif with Broad ADCC Activity. Cell Reports, 2018, 25, 3123-3135.e6.                                                                                          | 6.4  | 23        |
| 20 | Measuring the ability of HIV-specific antibodies to mediate trogocytosis. Journal of Immunological Methods, 2018, 463, 71-83.                                                                                                                                              | 1.4  | 32        |
| 21 | HIV-1 Subtype C-Infected Children with Exceptional Neutralization Breadth Exhibit Polyclonal<br>Responses Targeting Known Epitopes. Journal of Virology, 2018, 92, .                                                                                                       | 3.4  | 47        |
| 22 | Multi-Donor Longitudinal Antibody Repertoire Sequencing Reveals the Existence of Public Antibody<br>Clonotypes in HIV-1 Infection. Cell Host and Microbe, 2018, 23, 845-854.e6.                                                                                            | 11.0 | 100       |
| 23 | Serum glycan-binding IgG antibodies in HIV-1 infection and during the development of broadly neutralizing responses. Aids, 2017, 31, 2199-2209.                                                                                                                            | 2.2  | 13        |
| 24 | Prospects for passive immunity to prevent HIV infection. PLoS Medicine, 2017, 14, e1002436.                                                                                                                                                                                | 8.4  | 29        |
| 25 | Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathogens, 2017, 13, e1006074.                                                                                                               | 4.7  | 33        |
| 26 | Nonprogressing HIV-infected children share fundamental immunological features of nonpathogenic<br>SIV infection. Science Translational Medicine, 2016, 8, 358ra125.                                                                                                        | 12.4 | 121       |
| 27 | Amino Acid Changes in the HIV-1 gp41 Membrane Proximal Region Control Virus Neutralization Sensitivity. EBioMedicine, 2016, 12, 196-207.                                                                                                                                   | 6.1  | 34        |
| 28 | Contribution of Gag and Protease to HIV-1 Phenotypic Drug Resistance in Pediatric Patients Failing<br>Protease Inhibitor-Based Therapy. Antimicrobial Agents and Chemotherapy, 2016, 60, 2248-2256.                                                                        | 3.2  | 17        |
| 29 | Structural Constraints of Vaccine-Induced Tier-2 Autologous HIV Neutralizing Antibodies Targeting the Receptor-Binding Site. Cell Reports, 2016, 14, 43-54.                                                                                                                | 6.4  | 45        |
| 30 | New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional<br>Potency. Journal of Virology, 2016, 90, 76-91.                                                                                                                        | 3.4  | 205       |
| 31 | HIV broadly neutralizing antibody targets. Current Opinion in HIV and AIDS, 2015, 10, 135-143.                                                                                                                                                                             | 3.8  | 110       |
| 32 | South African HIV-1 subtype C transmitted variants with a specific V2 motif show higher dependence on α4β7 for replication. Retrovirology, 2015, 12, 54.                                                                                                                   | 2.0  | 19        |
| 33 | Randomized Cross-Sectional Study to Compare HIV-1 Specific Antibody and Cytokine Concentrations in<br>Female Genital Secretions Obtained by Menstrual Cup and Cervicovaginal Lavage. PLoS ONE, 2015, 10,<br>e0131906.                                                      | 2.5  | 26        |
| 34 | HIV Disease Progression in Seroconvertors from the CAPRISA 004 Tenofovir Gel Pre-exposure<br>Prophylaxis Trial. Journal of Acquired Immune Deficiency Syndromes (1999), 2015, 68, 55-61.                                                                                   | 2.1  | 10        |
| 35 | Reactivity of routine HIV antibody tests in children who initiated antiretroviral therapy in early<br>infancy as part of the Children with HIV Early Antiretroviral Therapy (CHER) trial: a retrospective<br>analysis. Lancet Infectious Diseases, The, 2015, 15, 803-809. | 9.1  | 47        |
| 36 | Genetic Changes in HIV-1 Gag-Protease Associated with Protease Inhibitor-Based Therapy Failure in Pediatric Patients. AIDS Research and Human Retroviruses, 2015, 31, 776-782.                                                                                             | 1.1  | 14        |

| #  | Article                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Virological features associated with the development of broadly neutralizing antibodies to HIV-1.<br>Trends in Microbiology, 2015, 23, 204-211.                                                                                                                     | 7.7  | 77        |
| 38 | Geographic and Temporal Trends in the Molecular Epidemiology and Genetic Mechanisms of<br>Transmitted HIV-1 Drug Resistance: An Individual-Patient- and Sequence-Level Meta-Analysis. PLoS<br>Medicine, 2015, 12, e1001810.                                         | 8.4  | 188       |
| 39 | Impact of Drug Resistance-Associated Amino Acid Changes in HIV-1 Subtype C on Susceptibility to Newer<br>Nonnucleoside Reverse Transcriptase Inhibitors. Antimicrobial Agents and Chemotherapy, 2015, 59,<br>960-971.                                               | 3.2  | 48        |
| 40 | Population-Based Surveillance of HIV Drug Resistance Emerging on Treatment and Associated Factors<br>at Sentinel Antiretroviral Therapy Sites in Namibia. Journal of Acquired Immune Deficiency Syndromes<br>(1999), 2015, 68, 463-471.                             | 2.1  | 14        |
| 41 | Ability To Develop Broadly Neutralizing HIV-1 Antibodies Is Not Restricted by the Germline Ig Gene<br>Repertoire. Journal of Immunology, 2015, 194, 4371-4378.                                                                                                      | 0.8  | 85        |
| 42 | The use of dried blood spot specimens for HIV-1 drug resistance genotyping in young children initiating antiretroviral therapy. Journal of Virological Methods, 2015, 223, 30-32.                                                                                   | 2.1  | 8         |
| 43 | Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies. Nature Medicine, 2015, 21, 1332-1336.                                                                                                                     | 30.7 | 215       |
| 44 | Strain-Specific V3 and CD4 Binding Site Autologous HIV-1 Neutralizing Antibodies Select<br>Neutralization-Resistant Viruses. Cell Host and Microbe, 2015, 18, 354-362.                                                                                              | 11.0 | 66        |
| 45 | Differences in HIV Type 1 Neutralization Breadth in 2 Geographically Distinct Cohorts in Africa.<br>Journal of Infectious Diseases, 2015, 211, 1461-1466.                                                                                                           | 4.0  | 7         |
| 46 | Viral Suppression Following Switch to Second-line Antiretroviral Therapy: Associations With<br>Nucleoside Reverse Transcriptase Inhibitor Resistance and Subtherapeutic Drug Concentrations Prior<br>to Switch. Journal of Infectious Diseases, 2014, 209, 711-720. | 4.0  | 47        |
| 47 | Viral Escape Pathways from Broadly Neutralising Antibodies Targeting the HIV Envelope Cleavage Site<br>Enhance MPER Mediated Neutralisation. AIDS Research and Human Retroviruses, 2014, 30, A20-A21.                                                               | 1.1  | 1         |
| 48 | The Sequence of the α4β7-binding Motif on Gp120 of Transmitted/Founder Viruses Contributes to the<br>Dependence on the Integrin for HIV Infection. AIDS Research and Human Retroviruses, 2014, 30, A56-A56.                                                         | 1.1  | 1         |
| 49 | Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies. Nature, 2014, 509, 55-62.                                                                                                                                                               | 27.8 | 681       |
| 50 | Immunoglobulin Gene Insertions and Deletions in the Affinity Maturation of HIV-1 Broadly Reactive Neutralizing Antibodies. Cell Host and Microbe, 2014, 16, 304-313.                                                                                                | 11.0 | 137       |
| 51 | Concordance between allele-specific PCR and ultra-deep pyrosequencing for the detection of HIV-1 non-nucleoside reverse transcriptase inhibitor resistance mutations. Journal of Virological Methods, 2014, 207, 182-187.                                           | 2.1  | 5         |
| 52 | HIV-1 Envelope gp41 Antibodies Can Originate from Terminal Ileum B Cells that Share Cross-Reactivity with Commensal Bacteria. Cell Host and Microbe, 2014, 16, 215-226.                                                                                             | 11.0 | 105       |
| 53 | Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.                                                                                                                                                                      | 27.8 | 702       |
| 54 | Evaluation of sequence ambiguities of the HIV-1 pol gene as a method to identify recent HIV-1 infection in transmitted drug resistance surveys. Infection, Genetics and Evolution, 2013, 18, 125-131.                                                               | 2.3  | 58        |

| #  | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Viral Escape from HIV-1 Neutralizing Antibodies Drives Increased Plasma Neutralization Breadth<br>through Sequential Recognition of Multiple Epitopes and Immunotypes. PLoS Pathogens, 2013, 9,<br>e1003738.                               | 4.7 | 190       |
| 56 | The Antibody Response against HIV-1. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a007039-a007039.                                                                                                                                | 6.2 | 152       |
| 57 | Characterization of anti-HIV-1 neutralizing and binding antibodies in chronic HIV-1 subtype C infection.<br>Virology, 2012, 433, 410-420.                                                                                                  | 2.4 | 12        |
| 58 | Broad neutralization by a combination of antibodies recognizing the CD4 binding site and a new conformational epitope on the HIV-1 envelope protein. Journal of Experimental Medicine, 2012, 209, 1469-1479.                               | 8.5 | 156       |
| 59 | International Network for Comparison of HIV Neutralization Assays: The NeutNet Report II. PLoS ONE, 2012, 7, e36438.                                                                                                                       | 2.5 | 63        |
| 60 | The Neutralization Breadth of HIV-1 Develops Incrementally over Four Years and Is Associated with<br>CD4 <sup>+</sup> T Cell Decline and High Viral Load during Acute Infection. Journal of Virology, 2011,<br>85, 4828-4840.              | 3.4 | 441       |
| 61 | Potent and Broad Neutralization of HIV-1 Subtype C by Plasma Antibodies Targeting a Quaternary<br>Epitope Including Residues in the V2 Loop. Journal of Virology, 2011, 85, 3128-3141.                                                     | 3.4 | 151       |
| 62 | Randomized Trial of Time-Limited Interruptions of Protease Inhibitor-Based Antiretroviral Therapy<br>(ART) vs. Continuous Therapy for HIV-1 Infection. PLoS ONE, 2011, 6, e21450.                                                          | 2.5 | 8         |
| 63 | Extreme Genetic Divergence Is Required for Coreceptor Switching in HIV-1 Subtype C. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, 9-15.                                                                                | 2.1 | 38        |
| 64 | HIV-1 drug resistance at antiretroviral treatment initiation in children previously exposed to single-dose nevirapine. Aids, 2011, 25, 1461-1469.                                                                                          | 2.2 | 39        |
| 65 | Adherence and virologic suppression during the first 24 weeks on antiretroviral therapy among<br>women in Johannesburg, South Africa - a prospective cohort study. BMC Public Health, 2011, 11, 88.                                        | 2.9 | 69        |
| 66 | lsolation of a Monoclonal Antibody That Targets the Alpha-2 Helix of gp120 and Represents the Initial<br>Autologous Neutralizing-Antibody Response in an HIV-1 Subtype C-Infected Individual. Journal of<br>Virology, 2011, 85, 7719-7729. | 3.4 | 54        |
| 67 | Detection of Low-Level K65R Variants in Nucleoside Reverse Transcriptase Inhibitor–Naive Chronic and<br>Acute HIV-1 Subtype C Infections. Journal of Infectious Diseases, 2011, 203, 798-802.                                              | 4.0 | 26        |
| 68 | Adherence to Drug-Refill Is a Useful Early Warning Indicator of Virologic and Immunologic Failure among HIV Patients on First-Line ART in South Africa. PLoS ONE, 2011, 6, e17518.                                                         | 2.5 | 84        |
| 69 | Drug Resistance Patterns and Virus Re-Suppression among HIV-1 Subtype C Infected Patients Receiving<br>Non-Nucleoside Reverse Transcriptase Inhibitors in South Africa. Journal of AIDS & Clinical Research,<br>2011, 02, .                | 0.5 | 30        |
| 70 | Optimization of allele-specific PCR using patient-specific HIV consensus sequences for primer design.<br>Journal of Virological Methods, 2010, 164, 122-126.                                                                               | 2.1 | 16        |
| 71 | Mannose-rich glycosylation patterns on HIV-1 subtype C gp120 and sensitivity to the lectins,<br>Griffithsin, Cyanovirin-N and Scytovirin. Virology, 2010, 402, 187-196.                                                                    | 2.4 | 95        |
| 72 | Reuse of Nevirapine in Exposed HIV-Infected Children After Protease Inhibitor–Based Viral Suppression.<br>JAMA - Journal of the American Medical Association, 2010, 304, 1082.                                                             | 7.4 | 75        |

| #  | Article                                                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Viremia and drug resistance among HIV-1 patients on antiretroviral treatment: a cross-sectional study<br>in Soweto, South Africa. Aids, 2010, 24, 1679-1687.                                                                                                                            | 2.2  | 100       |
| 74 | Effectiveness and Safety of Tenofovir Gel, an Antiretroviral Microbicide, for the Prevention of HIV<br>Infection in Women. Science, 2010, 329, 1168-1174.                                                                                                                               | 12.6 | 2,239     |
| 75 | International Network for Comparison of HIV Neutralization Assays: The NeutNet Report. PLoS ONE, 2009, 4, e4505.                                                                                                                                                                        | 2.5  | 109       |
| 76 | Antibody Specificities Associated with Neutralization Breadth in Plasma from Human<br>Immunodeficiency Virus Type 1 Subtype C-Infected Blood Donors. Journal of Virology, 2009, 83,<br>8925-8937.                                                                                       | 3.4  | 170       |
| 77 | Persistent Minority K103N Mutations among Women Exposed to Singleâ€Dose Nevirapine and Virologic<br>Response to Nonnucleoside Reverseâ€Transcriptase Inhibitor–Based Therapy. Clinical Infectious<br>Diseases, 2009, 48, 462-472.                                                       | 5.8  | 74        |
| 78 | Viremia, Resuppression, and Time to Resistance in Human Immunodeficiency Virus (HIV) Subtype C during<br>First‣ine Antiretroviral Therapy in South Africa. Clinical Infectious Diseases, 2009, 49, 1928-1935.                                                                           | 5.8  | 107       |
| 79 | Women exposed to single-dose nevirapine in successive pregnancies: effectiveness and nonnucleoside reverse transcriptase inhibitor resistance. Aids, 2009, 23, 809-816.                                                                                                                 | 2.2  | 17        |
| 80 | Limited Neutralizing Antibody Specificities Drive Neutralization Escape in Early HIV-1 Subtype C<br>Infection. PLoS Pathogens, 2009, 5, e1000598.                                                                                                                                       | 4.7  | 213       |
| 81 | Human Immunodeficiency Virus Type 2 (HIV-2)/HIV-1 Envelope Chimeras Detect High Titers of Broadly<br>Reactive HIV-1 V3-Specific Antibodies in Human Plasma. Journal of Virology, 2009, 83, 1240-1259.                                                                                   | 3.4  | 67        |
| 82 | Cytotoxicological Analysis of a gp120 Binding Aptamer with Cross-Clade Human Immunodeficiency<br>Virus Type 1 Entry Inhibition Properties: Comparison to Conventional Antiretrovirals. Antimicrobial<br>Agents and Chemotherapy, 2009, 53, 3056-3064.                                   | 3.2  | 16        |
| 83 | Broad Neutralization of Human Immunodeficiency Virus Type 1 Mediated by Plasma Antibodies against the gp41 Membrane Proximal External Region. Journal of Virology, 2009, 83, 11265-11274.                                                                                               | 3.4  | 93        |
| 84 | Human Immunodeficiency Virus-Specific Gamma Interferon Enzyme-Linked Immunospot Assay Responses<br>Targeting Specific Regions of the Proteome during Primary Subtype C Infection Are Poor Predictors of<br>the Course of Viremia and Set Point. Journal of Virology, 2009, 83, 470-478. | 3.4  | 63        |
| 85 | Highly complex neutralization determinants on a monophyletic lineage of newly transmitted subtype<br>C HIV-1 Env clones from India. Virology, 2009, 385, 505-520.                                                                                                                       | 2.4  | 78        |
| 86 | High titer HIV-1 V3-specific antibodies with broad reactivity but low neutralizing potency in acute infection and following vaccination. Virology, 2009, 387, 414-426.                                                                                                                  | 2.4  | 86        |
| 87 | Functional and genetic analysis of coreceptor usage by dualtropic HIV-1 subtype C isolates. Virology, 2009, 393, 56-67.                                                                                                                                                                 | 2.4  | 14        |
| 88 | Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine?.<br>Nature Medicine, 2009, 15, 866-870.                                                                                                                                               | 30.7 | 390       |
| 89 | Specificity of the autologous neutralizing antibody response. Current Opinion in HIV and AIDS, 2009, 4, 358-363.                                                                                                                                                                        | 3.8  | 59        |
| 90 | Initial B-Cell Responses to Transmitted Human Immunodeficiency Virus Type 1: Virion-Binding<br>Immunoglobulin M (IgM) and IgG Antibodies Followed by Plasma Anti-gp41 Antibodies with Ineffective<br>Control of Initial Viremia. Journal of Virology, 2008, 82, 12449-12463.            | 3.4  | 548       |

| #   | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Profiling the Specificity of Neutralizing Antibodies in a Large Panel of Plasmas from Patients<br>Chronically Infected with Human Immunodeficiency Virus Type 1 Subtypes B and C. Journal of Virology,<br>2008, 82, 11651-11668.              | 3.4 | 337       |
| 92  | Active-Site Mutations in the South African Human Immunodeficiency Virus Type 1 Subtype C Protease<br>Have a Significant Impact on Clinical Inhibitor Binding: Kinetic and Thermodynamic Study. Journal of<br>Virology, 2008, 82, 11476-11479. | 3.4 | 38        |
| 93  | The C3-V4 Region Is a Major Target of Autologous Neutralizing Antibodies in Human Immunodeficiency<br>Virus Type 1 Subtype C Infection. Journal of Virology, 2008, 82, 1860-1869.                                                             | 3.4 | 142       |
| 94  | 4E10-Resistant Variants in a Human Immunodeficiency Virus Type 1 Subtype C-Infected Individual with an<br>Anti-Membrane-Proximal External Region-Neutralizing Antibody Response. Journal of Virology, 2008,<br>82, 2367-2375.                 | 3.4 | 37        |
| 95  | HIV Type 1 Subtype C Drug Resistance among Pediatric and Adult South African Patients Failing<br>Antiretroviral Therapy. AIDS Research and Human Retroviruses, 2008, 24, 1449-1454.                                                           | 1.1 | 54        |
| 96  | Development of Phenotypic HIV-1 Drug Resistance After Exposure to Single-Dose Nevirapine. Journal of Acquired Immune Deficiency Syndromes (1999), 2008, 49, 538-543.                                                                          | 2.1 | 9         |
| 97  | Early virological suppression with three-class antiretroviral therapy in HIV-infected African infants.<br>Aids, 2008, 22, 1333-1343.                                                                                                          | 2.2 | 83        |
| 98  | Establishing a Cohort at High Risk of HIV Infection in South Africa: Challenges and Experiences of the CAPRISA 002 Acute Infection Study. PLoS ONE, 2008, 3, e1954.                                                                           | 2.5 | 175       |
| 99  | N-Linked Glycan Modifications in gp120 of Human Immunodeficiency Virus Type 1 Subtype C Render<br>Partial Sensitivity to 2G12 Antibody Neutralization. Journal of Virology, 2007, 81, 10769-10776.                                            | 3.4 | 42        |
| 100 | Polymorphisms in Nef Associated with Different Clinical Outcomes in HIV Type 1 Subtype C-Infected Children. AIDS Research and Human Retroviruses, 2007, 23, 204-215.                                                                          | 1.1 | 21        |
| 101 | A Model of Directional Selection Applied to the Evolution of Drug Resistance in HIV-1. Molecular<br>Biology and Evolution, 2007, 24, 1025-1031.                                                                                               | 8.9 | 33        |
| 102 | Longitudinal Analysis of HIV Type 1 Subtype C Envelope Sequences from South Africa. AIDS Research and Human Retroviruses, 2007, 23, 316-321.                                                                                                  | 1.1 | 25        |
| 103 | Neutralizing and other antiviral antibodies in HIV-1 infection and vaccination. Current Opinion in HIV and AIDS, 2007, 2, 169-176.                                                                                                            | 3.8 | 20        |
| 104 | Selection and Persistence of Viral Resistance in HIV-Infected Children After Exposure to Single-Dose<br>Nevirapine. Journal of Acquired Immune Deficiency Syndromes (1999), 2007, 44, 148-153.                                                | 2.1 | 79        |
| 105 | Transmission Rates in Consecutive Pregnancies Exposed to Single-Dose Nevirapine in Soweto, South<br>Africa and Abidjan, Côte d'Ivoire. Journal of Acquired Immune Deficiency Syndromes (1999), 2007, 45,<br>206-209.                          | 2.1 | 29        |
| 106 | Genetic characteristics of HIV-1 subtype C envelopes inducing cross-neutralizing antibodies. Virology, 2007, 368, 172-181.                                                                                                                    | 2.4 | 45        |
| 107 | HIV-1 pol mutation frequency by subtype and treatment experience: extension of the HIVseq program to seven non-B subtypes. Aids, 2006, 20, 643-651.                                                                                           | 2.2 | 78        |
| 108 | Decay of K103N mutants in cellular DNA and plasma RNA after single-dose nevirapine to reduce mother-to-child HIV transmission. Aids, 2006, 20, 995-1002.                                                                                      | 2.2 | 87        |

LYNN MORRIS

| #   | Article                                                                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Genetic characteristics of the V3 region associated with CXCR4 usage in HIV-1 subtype C isolates.<br>Virology, 2006, 356, 95-105.                                                                                                                                                                     | 2.4 | 59        |
| 110 | High specificity of V3 serotyping among human immunodeficiency virus type-1 subtype C infected patients with varying disease status and viral phenotype. Journal of Medical Virology, 2006, 78, 1262-1268.                                                                                            | 5.0 | 5         |
| 111 | Genetic and Neutralization Properties of Subtype C Human Immunodeficiency Virus Type 1 Molecular<br>env Clones from Acute and Early Heterosexually Acquired Infections in Southern Africa. Journal of<br>Virology, 2006, 80, 11776-11790.                                                             | 3.4 | 334       |
| 112 | Discordances between Interpretation Algorithms for Genotypic Resistance to Protease and Reverse<br>Transcriptase Inhibitors of Human Immunodeficiency Virus Are Subtype Dependent. Antimicrobial<br>Agents and Chemotherapy, 2006, 50, 694-701.                                                       | 3.2 | 78        |
| 113 | Silencing of HIV-1 Subtype C Primary Isolates by Expressed Small Hairpin RNAs Targeted togag. AIDS<br>Research and Human Retroviruses, 2006, 22, 401-410.                                                                                                                                             | 1.1 | 13        |
| 114 | Resistance Mutational Analysis of HIV Type 1 Subtype C among Rural South African Drug-Naive Patients<br>Prior to Large-Scale Availability of Antiretrovirals. AIDS Research and Human Retroviruses, 2006, 22,<br>1306-1312.                                                                           | 1.1 | 32        |
| 115 | Nature of Nonfunctional Envelope Proteins on the Surface of Human Immunodeficiency Virus Type 1.<br>Journal of Virology, 2006, 80, 2515-2528.                                                                                                                                                         | 3.4 | 309       |
| 116 | Genotypic and Phenotypic Characterization of Viral Isolates from HIV-1 Subtype C-Infected Children with Slow and Rapid Disease Progression. AIDS Research and Human Retroviruses, 2006, 22, 458-465.                                                                                                  | 1.1 | 51        |
| 117 | A Reliable Phenotype Predictor for Human Immunodeficiency Virus Type 1 Subtype C Based on Envelope<br>V3 Sequences. Journal of Virology, 2006, 80, 4698-4704.                                                                                                                                         | 3.4 | 124       |
| 118 | Insensitivity of Paediatric HIV-1 Subtype C Viruses to Broadly Neutralising Monoclonal Antibodies<br>Raised against Subtype B. PLoS Medicine, 2006, 3, e255.                                                                                                                                          | 8.4 | 72        |
| 119 | Evaluation of an oligonucleotide ligation assay for detection of mutations in HIV-1 subtype C<br>individuals who have high level resistance to nucleoside reverse transcriptase inhibitors and<br>non-nucleoside reverse transcriptase inhibitors. Journal of Virological Methods, 2005, 125, 99-109. | 2.1 | 10        |
| 120 | Use of alternate coreceptors on primary cells by two HIV-1 isolates. Virology, 2005, 339, 136-144.                                                                                                                                                                                                    | 2.4 | 44        |
| 121 | Emergence of Drugâ€Resistant HIVâ€1 after Intrapartum Administration of Singleâ€Dose Nevirapine Is<br>Substantially Underestimated. Journal of Infectious Diseases, 2005, 192, 16-23.                                                                                                                 | 4.0 | 214       |
| 122 | Impact of HIV-1 Subtype and Antiretroviral Therapy on Protease and Reverse Transcriptase Genotype:<br>Results of a Global Collaboration. PLoS Medicine, 2005, 2, e112.                                                                                                                                | 8.4 | 262       |
| 123 | Recommendations for the Design and Use of Standard Virus Panels To Assess Neutralizing Antibody<br>Responses Elicited by Candidate Human Immunodeficiency Virus Type 1 Vaccines. Journal of Virology,<br>2005, 79, 10103-10107.                                                                       | 3.4 | 233       |
| 124 | Characterization of Human Immunodeficiency Virus Type 1 from a Previously Unexplored Region of<br>South Africa with a High HIV Prevalence. AIDS Research and Human Retroviruses, 2005, 21, 103-109.                                                                                                   | 1.1 | 24        |
| 125 | In VitroGeneration of HIV Type 1 Subtype C Isolates Resistant to Enfuvirtide. AIDS Research and Human Retroviruses, 2005, 21, 776-783.                                                                                                                                                                | 1.1 | 14        |
| 126 | Use of a novel washing method combining multiple density gradients and trypsin for removing human<br>immunodeficiency virus-1 and hepatitis C virus from semen. Fertility and Sterility, 2005, 84, 1001-1010.                                                                                         | 1.0 | 50        |

## LYNN MORRIS

| #   | Article                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Short Communication: Viral Dynamics and CD4+ T Cell Counts in Subtype C Human Immunodeficiency<br>Virus Type 1-Infected Individuals from Southern Africa. AIDS Research and Human Retroviruses, 2005,<br>21, 285-291. | 1.1  | 24        |
| 128 | Incidence of HIVâ€l Dual Infection and Its Association with Increased Viral Load Set Point in a Cohort of<br>HIVâ€l Subtype C–Infected Female Sex Workers. Journal of Infectious Diseases, 2004, 190, 1355-1359.      | 4.0  | 119       |
| 129 | Does Tuberculosis Increase HIV Load?. Journal of Infectious Diseases, 2004, 190, 1677-1684.                                                                                                                           | 4.0  | 71        |
| 130 | Predicted genotypic resistance to the novel entry inhibitor, BMS-378806, among HIV-1 isolates of subtypes A to G. Aids, 2004, 18, 2327-2330.                                                                          | 2.2  | 14        |
| 131 | Characterization and Selection of HIV-1 Subtype C Isolates for Use in Vaccine Development. AIDS<br>Research and Human Retroviruses, 2003, 19, 133-144.                                                                | 1.1  | 113       |
| 132 | Human Immunodeficiency Virus–1 RNA Levels and CD4 Lymphocyte Counts, during Treatment for Active<br>Tuberculosis, in South African Patients. Journal of Infectious Diseases, 2003, 187, 1967-1971.                    | 4.0  | 68        |
| 133 | Low frequency of the V106M mutation among HIV-1 subtype C-infected pregnant women exposed to nevirapine. Aids, 2003, 17, 1698-1700.                                                                                   | 2.2  | 27        |
| 134 | HIV-1 Subtype C Reverse Transcriptase Sequences from Drug-Naive Pregnant Women in South Africa.<br>AIDS Research and Human Retroviruses, 2002, 18, 605-610.                                                           | 1.1  | 38        |
| 135 | HIV-1 Subtype A, D, G, AG and Unclassified Sequences Identified in South Africa. AIDS Research and<br>Human Retroviruses, 2002, 18, 681-683.                                                                          | 1.1  | 30        |
| 136 | Full-Length Genome Analysis of HIV-1 Subtype C Utilizing CXCR4 and Intersubtype Recombinants Isolated in South Africa. AIDS Research and Human Retroviruses, 2002, 18, 879-886.                                       | 1.1  | 39        |
| 137 | Regional Clustering of Shared Neutralization Determinants on Primary Isolates of Clade C Human<br>Immunodeficiency Virus Type 1 from South Africa. Journal of Virology, 2002, 76, 2233-2244.                          | 3.4  | 111       |
| 138 | Neutralizing Antibody Responses to HIV-1 Infection. IUBMB Life, 2002, 53, 197-199.                                                                                                                                    | 3.4  | 9         |
| 139 | Conserved Domains of Subtype C Nef from South African HIV Type 1-Infected Individuals Include<br>Cytotoxic T Lymphocyte Epitope-Rich Regions. AIDS Research and Human Retroviruses, 2001, 17, 1681-1687.              | 1.1  | 20        |
| 140 | Potent, Broad-Spectrum Inhibition of Human Immunodeficiency Virus Type 1 by the CCR5 Monoclonal Antibody PRO 140. Journal of Virology, 2001, 75, 579-588.                                                             | 3.4  | 216       |
| 141 | Characterization of Full-Length HIV Type 1 Subtype C Sequences from South Africa. AIDS Research and<br>Human Retroviruses, 2001, 17, 1527-1531.                                                                       | 1.1  | 52        |
| 142 | AIDS dissidents aren't victims $\hat{a} \in \tilde{~}$ but the people their ideas kill will be. Nature, 2000, 405, 273-273.                                                                                           | 27.8 | 0         |
| 143 | Identification of HIV Type 1 Intersubtype Recombinants in South Africa Using env and gag Heteroduplex<br>Mobility Assays. AIDS Research and Human Retroviruses, 2000, 16, 493-497.                                    | 1.1  | 20        |
| 144 | Meningitis in a community with a high prevalence of tuberculosis and HIV infection. Journal of the Neurological Sciences, 1999, 162, 20-26.                                                                           | 0.6  | 41        |

LYNN MORRIS

| #   | Article                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | The importance of doing HIV research in developing countries. Nature Medicine, 1998, 4, 1228-1229.                                                                     | 30.7 | 3         |
| 146 | HIV-1 Antigen–specific and –nonspecific B Cell Responses Are Sensitive to Combination Antiretroviral<br>Therapy. Journal of Experimental Medicine, 1998, 188, 233-245. | 8.5  | 234       |
| 147 | Viral structure, replication, tropism, pathogenesis and natural history. , 0, , 87-96.                                                                                 |      | 0         |
| 148 | HIV Coinfection Provides Insights for the Design of Vaccine Cocktails to Elicit Broadly Neutralizing<br>Antibodies. Journal of Virology, 0, , .                        | 3.4  | 0         |