Jun-ichiro Hayashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/32750/publications.pdf

Version: 2024-02-01

239 papers

9,370 citations

51 h-index 84 g-index

245 all docs

245 docs citations

times ranked

245

5973 citing authors

#	Article	IF	CITATIONS
1	Dissolution of Iron Oxides Highly Loaded in Oxalic Acid Aqueous Solution for a Potential Application in Iron-Making. ISIJ International, 2022, 62, 2466-2475.	0.6	6
2	Catalytic deep eutectic solvent for levoglucosenone production by pyrolysis of cellulose. Bioresource Technology, 2022, 344, 126323.	4.8	10
3	Treatment of wastewater from biomass pyrolysis and recovery of its organic compounds with char-assisted drying. Fuel, 2022, 312, 122825.	3.4	O
4	Hot-Compressed Water Treatment and Subsequent Binderless Hot Pressing for High-Strength Plate Preparation from Rice Husk. ACS Sustainable Chemistry and Engineering, 2022, 10, 1932-1942.	3.2	3
5	The Antioxidant Activity of the Extracts from Disposition of the Waste Sawdust Substrate from Shiitake Mushroom (<i>Lentinula edodes</i>) Cultivation by the Two-step Hot/hot-compressed Water Percolation. Mokuzai Gakkai Shi, 2022, 68, 26-35.	0.2	O
6	Various acids functionalized polyaniline–peanut shell activated carbon composites for dye removal. Journal of Material Cycles and Waste Management, 2022, 24, 1508-1523.	1.6	10
7	Staged Pyrolytic Conversion of Acid-Loaded Woody Biomass for Production of High-Strength Coke and Valorization of Volatiles. Energy & Ener	2.5	7
8	Improvement of levoglucosenone selectivity in liquid phase conversion of cellulose-derived anhydrosugar over solid acid catalysts. Fuel Processing Technology, 2021, 212, 106625.	3.7	18
9	Formation of <i>p</i> -Unsubstituted Phenols in Base-catalyzed Lignin Depolymerization. MATEC Web of Conferences, 2021, 333, 05006.	0.1	2
10	Analysis of Primary Reactions in Biomass Oxidation with O ₂ in Hot-Compressed Alkaline Water. ACS Omega, 2021, 6, 4236-4246.	1.6	1
11	Impact of heating rates on the evolution of function groups of the biochar from lignin pyrolysis. Journal of Analytical and Applied Pyrolysis, 2021, 155, 105031.	2.6	56
12	Catalytic Strategies for Levoglucosenone Production by Pyrolysis of Cellulose and Lignocellulosic Biomass. Energy & Energy & Strategies for Levoglucosenone Production by Pyrolysis of Cellulose and Lignocellulosic Biomass.	2.5	22
13	An Approach to Simulate Vapor Phase Reactions of Coal Volatiles in a Reducing Section of the Two Stage Entrained Flow Gasifier with a Detailed Chemical Kinetic Model. Journal of Chemical Engineering of Japan, 2021, 54, 334-343.	0.3	2
14	Leaching Char with Acidic Aqueous Phase from Biomass Pyrolysis: Removal of Alkali and Alkaline-Earth Metallic Species and Uptakes of Water-Soluble Organics. Energy & Species, 2021, 35, 12237-12251.	2.5	6
15	Review on the catalytic tri-reforming of methane - Part II: Catalyst development. Applied Catalysis A: General, 2021, 623, 118286.	2.2	40
16	Fast Synthesis of Hydroxymethylfurfural from Levoglucosenone by Mixing with Sulphuric Acid and Heating in a Microtube Reactor. MATEC Web of Conferences, 2021, 333, 05005.	0.1	2
17	Influence of ionic liquid type on porous carbon formation during the ionothermal pyrolysis of cellulose. Journal of Analytical and Applied Pyrolysis, 2020, 145, 104728.	2.6	19
18	Change in Catalytic Activity of Potassium during CO ₂ Gasification of Char. Energy & Energy	2.5	7

#	Article	IF	CITATIONS
19	Segregation of char and silica sand particles in a hot-fluidized-bed steam gasifier. Advanced Powder Technology, 2020, 31, 867-874.	2.0	3
20	Analytical Procedure for Proximate Analysis of Algal Biomass: Case Study for <i>Spirulina platensis</i> and <i>Chlorella vulgaris</i> Energy & Ener	2.5	19
21	Microwave-assisted dry reforming of methane for syngas production: a review. Environmental Chemistry Letters, 2020, 18, 1987-2019.	8.3	51
22	Sustainable Iron-Making Using Oxalic Acid: The Concept, A Brief Review of Key Reactions, and An Experimental Demonstration of the Iron-Making Process. ACS Sustainable Chemistry and Engineering, 2020, 8, 13292-13301.	3.2	19
23	Selective Production of Phenolic Monomers and Biochar by Pyrolysis of Lignin with Internal Recycling of Heavy Oil. Energy & Samp; Fuels, 2020, 34, 7183-7189.	2.5	8
24	Sequential conversion of lignite in alkaline water by oxidative degradation, dissolution and catalytic gasification. Fuel, 2020, 278, 118329.	3.4	3
25	Methane decomposition with a minimal catalyst: An optimization study with response surface methodology over Ni/SiO2 nanocatalyst. International Journal of Hydrogen Energy, 2020, 45, 14383-14395.	3.8	21
26	Selective Hydrodeoxygenation of \hat{I}^3 -Valerolactone over Silica-supported Rh-based Bimetallic Catalysts. Energy & En	2.5	11
27	Deep Delignification of Woody Biomass by Repeated Mild Alkaline Treatments with Pressurized O ₂ . ACS Omega, 2020, 5, 29168-29176.	1.6	8
28	The Distinctive Effects of Glucose-Derived Carbon on the Performance of Ni-Based Catalysts in Methane Dry Reforming. Catalysts, 2020, 10, 21.	1.6	5
29	Improvement of Pelletability of Woody Biomass by Torrefaction under Pressurized Steam. Energy & Steam; Fuels, 2019, 33, 11253-11262.	2.5	26
30	Re-examination of Thermogravimetric Kinetic Analysis of Lignite Char Gasification. Energy & Camp; Fuels, 2019, 33, 10913-10922.	2.5	4
31	Biochar-Assisted Water Electrolysis. Energy & Diochar-Assisted Water	2.5	24
32	Quantitative Description of Catalysis of Inherent Metallic Species in Lignite Char during CO ₂ Gasification. Energy & E	2.5	6
33	Two-step conversion of cellulose to levoglucosenone using updraft fixed bed pyrolyzer and catalytic reformer. Fuel Processing Technology, 2019, 191, 29-35.	3.7	17
34	Photochemical removal of acetaldehyde using 172Ânm vacuum ultraviolet excimer lamp in N2 or air at atmospheric pressure. Environmental Science and Pollution Research, 2019, 26, 11314-11325.	2.7	3
35	Clean Synthesis of 5-Hydroxymethylfurfural and Levulinic Acid by Aqueous Phase Conversion of Levoglucosenone over Solid Acid Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 5892-5899.	3.2	34
36	Production of High-strength Cokes from Non-/Slightly Caking Coals. Part I: Effects of Coal Pretreatment and Variables for Briquetting and Carbonization on Coke Properties. ISIJ International, 2019, 59, 1440-1448.	0.6	8

#	Article	IF	Citations
37	Quantitative Analyses of Chemical Structural Change and Gas Generation Profile of Coal upon Heating toward Gaining New Insights for Coal Pyrolysis Chemistry. ISIJ International, 2019, 59, 1376-1381.	0.6	3
38	Continuous monitoring of char surface activity toward benzene. Carbon Resources Conversion, 2019, 2, 43-50.	3.2	9
39	Effect of SiO2 on loss of catalysis of inherent metallic species in CO2 gasification of coke from lignite. Carbon Resources Conversion, 2019, 2, 13-22.	3.2	15
40	Production of High-strength Cokes from Non- and Slightly Caking Coals. Part II: Application of Sequence of Fine Pulverization of Coal, Briquetting and Carbonization to Single Coals and Binary Blends. ISIJ International, 2019, 59, 1449-1456.	0.6	7
41	Enhanced Photocatalytic Degradation of Methyl Orange by Au/TiO ₂ Nanoparticles under Neutral and Acidic Solutions. ChemistrySelect, 2018, 3, 1432-1438.	0.7	15
42	Computational Study on the Thermal Decomposition of Phenolâ€Type Monolignols. International Journal of Chemical Kinetics, 2018, 50, 304-316.	1.0	8
43	Investigation on the Occurrences and Interactions of Corrosive Species during Pyrolysis of Zhundong Coal Using SSNMR and HT-XRD. Energy & Energy & 2018, 32, 5062-5071.	2.5	6
44	Synthesis of Flowerâ€Like AuPd@SiO ₂ Nanoparticles with a Broad Light Extinction for Application to Efficient Dyeâ€Sensitized Solar Cells. Particle and Particle Systems Characterization, 2018, 35, 1700396.	1.2	7
45	Efficient removal of benzene in air at atmospheric pressure using a side-on type 172Ânm Xe2 excimer lamp. Environmental Science and Pollution Research, 2018, 25, 18980-18989.	2.7	7
46	Theoretical Study on Elementary Reaction Steps in Thermal Decomposition Processes of Syringol-Type Monolignol Compounds. Journal of Physical Chemistry A, 2018, 122, 822-831.	1.1	5
47	CO ₂ Gasification of Sugar Cane Bagasse: Quantitative Understanding of Kinetics and Catalytic Roles of Inherent Metallic Species. Energy & Energy	2.5	18
48	Transient three-dimensional simulation of densification process of carbon fibre preforms via chemical vapour infiltration of carbon matrix from methane. Chemical Engineering Science, 2018, 176, 107-115.	1.9	7
49	Characteristic Properties of Lignite To Be Converted to High-Strength Coke by Hot Briquetting and Carbonization. Energy & Energy	2.5	14
50	Predicting molecular composition of primary product derived from fast pyrolysis of lignin with semi-detailed kinetic model. Fuel, 2018, 212, 515-522.	3.4	23
51	Nanomaterials as Catalysts. , 2018, , 45-82.		15
52	An Overview of Metal Oxide Nanostructures. , 2018, , 19-57.		45
53	Nano-sized nickel catalyst for deep hydrogenation of lignin monomers and first-principles insight into the catalyst preparation. Journal of Materials Chemistry A, 2017, 5, 3948-3965.	5.2	29
54	Theoretical Study on Reaction Pathways Leading to CO and CO ₂ in the Pyrolysis of Resorcinol. Journal of Physical Chemistry A, 2017, 121, 631-637.	1.1	11

#	Article	IF	Citations
55	Catalytic hydrogenolysis of kraft lignin to monomers at high yield in alkaline water. Green Chemistry, 2017, 19, 2636-2645.	4.6	49
56	Theoretical Study on Hydrogenolytic Cleavage of Intermonomer Linkages in Lignin. Journal of Physical Chemistry A, 2017, 121, 2868-2877.	1.1	10
57	A review on methane transformation to hydrogen and nanocarbon: Relevance of catalyst characteristics and experimental parameters on yield. Renewable and Sustainable Energy Reviews, 2017, 76, 743-767.	8.2	79
58	An approach for on-line analysis of multi-component volatiles from coal pyrolysis with Li + -attachment ionization mass spectrometry. Fuel Processing Technology, 2017, 158, 141-145.	3.7	2
59	Production of Levoglucosenone and Dihydrolevoglucosenone by Catalytic Reforming of Volatiles from Cellulose Pyrolysis Using Supported Ionic Liquid Phase. ACS Sustainable Chemistry and Engineering, 2017, 5, 1132-1140.	3.2	78
60	Synthesis of Carbonâ€Supported Pt–YO _{<i>x</i>} and PtY Nanoparticles with High Catalytic Activity for the Oxygen Reduction Reaction Using a Microwaveâ€based Polyol Method. ChemCatChem, 2017, 9, 962-970.	1.8	18
61	Theoretical Study on the Kinetics of Thermal Decomposition of Guaiacol and Catechol. Journal of Physical Chemistry A, 2017, 121, 8495-8503.	1.1	14
62	Governance of the porosity and of the methane decomposition activity sustainability of NiO/SiO2 nanocatalysts by changing the synthesis parameters in the modified Stöber method. Comptes Rendus Chimie, 2017, 20, 896-909.	0.2	12
63	Synthesis and Electrochemical Properties of Fe ₃ C-carbon Composite as an Anode Material for Lithium-ion Batteries. Electrochemistry, 2017, 85, 630-633.	0.6	10
64	Toward Low-Temperature Coal Gasification: Experimental and Numerical Studies of Thermochemical Coal Conversion Considering the Interactions between Volatiles and Char Particles. KONA Powder and Particle Journal, 2017, 34, 70-79.	0.9	3
65	Recent application of calculations of metal complexes based on density functional theory. RSC Advances, 2016, 6, 77375-77395.	1.7	47
66	Interactions between Volatiles and Char during Pyrolysis of Biomass: Reactive Species Determining and Reaction over Functionalized Carbon Nanotubes. Energy & Energy & 2016, 30, 5758-5765.	2.5	18
67	Experimental investigation of thermal decomposition of dihydroxybenzene isomers: Catechol, hydroquinone, and resorcinol. Journal of Analytical and Applied Pyrolysis, 2016, 120, 321-329.	2.6	19
68	Steam–Oxygen Gasification of Potassium-Loaded Lignite: Proof of Concept of Type IV Gasification. Energy & Date: Proof of Concept of Type IV Gasification.	2.5	15
69	Kinetics and Mechanism of CO ₂ Gasification of Chars from 11 Mongolian Lignites. Energy & Lighten & Lignites &	2.5	15
70	Numerical Study on the Steam Reforming of Biomass Tar Using a Detailed Chemical Kinetic Model. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2015, 94, 794-804.	0.2	4
71	Modification of Reactivity and Strength of Formed Coke from Victorian Lignite by Leaching of Metallic Species. ISIJ International, 2015, 55, 765-774.	0.6	17
72	In-situ reforming of the volatiles from fast pyrolysis of ligno-cellulosic biomass over zeolite catalysts for aromatic compound production. Fuel Processing Technology, 2015, 136, 73-78.	3.7	25

#	Article	IF	CITATIONS
73	Predicting the temperature and reactant concentration profiles of reacting flow in the partial oxidation of hot coke oven gas using detailed chemistry and a one-dimensional flow model. Chemical Engineering Journal, 2015, 266, 82-90.	6.6	18
74	Modeling of gas/particle flow in coal conversion with a drop tube reactor using a lumped kinetic model accounting volatiles–char interaction. Fuel Processing Technology, 2015, 138, 588-594.	3.7	9
75	Detailed Chemical Kinetic Modeling of Vapor-Phase Reactions of Volatiles Derived from Fast Pyrolysis of Lignin. Industrial & Engineering Chemistry Research, 2015, 54, 6855-6864.	1.8	50
76	Kinetic modeling of non-catalytic partial oxidation of nascent volatiles derived from fast pyrolysis of woody biomass with detailed chemistry. Fuel Processing Technology, 2015, 134, 159-167.	3.7	13
77	A CFD study on the reacting flow of partially combusting hot coke oven gas in a bench-scale reformer. Fuel, 2015, 159, 590-598.	3.4	12
78	Preparation of Coke from Hydrothermally Treated Biomass in Sequence of Hot Briquetting and Carbonization. ISIJ International, 2014, 54, 2461-2469.	0.6	18
79	Chemical Structures and Primary Pyrolysis Characteristics of Lignins Obtained from Different Preparation Methods. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2014, 93, 986-994.	0.2	8
80	Pyrolysis of Lignite with Internal Recycling and Conversion of Oil. Energy & Samp; Fuels, 2014, 28, 7285-7293.	2.5	14
81	Kinetics and Mechanism of Steam Gasification of Char from Hydrothermally Treated Woody Biomass. Energy & Energy	2.5	35
82	Hydrodynamic behavior of binary mixture of solids in a triple-bed combined circulating fluidized bed with high mass flux. Advanced Powder Technology, 2014, 25, 379-388.	2.0	23
83	Low-Temperature Gasification of Biomass and Lignite: Consideration of Key Thermochemical Phenomena, Rearrangement of Reactions, and Reactor Configuration. Energy & E	2.5	51
84	Catalytic Hydrothermal Reforming of Lignin in Aqueous Alkaline Medium. Energy & Ener	2.5	20
85	Adsorption and Desorption Behavior of Asphaltene on Polymer-Brush-Immobilized Surfaces. ACS Applied Materials & Surfaces, 2014, 6, 20385-20389.	4.0	38
86	Leaching of Alkali and Alkaline Earth Metallic Species from Rice Husk with Bio-oil from Its Pyrolysis. Energy &	2.5	42
87	Sequential Pyrolysis and Potassium-Catalyzed Steam–Oxygen Gasification of Woody Biomass in a Continuous Two-Stage Reactor. Energy & Samp; Fuels, 2014, 28, 6407-6418.	2.5	10
88	A mechanistic study on the reaction pathways leading to benzene and naphthalene in cellulose vapor phase cracking. Biomass and Bioenergy, 2014, 69, 144-154.	2.9	37
89	Examination of Kinetics of Non-catalytic Steam Gasification of Biomass/Lignite Chars and Its Relationship with the Variation of the Pore Structure. Energy &	2.5	21
90	Contribution of dehydration and depolymerization reactions during the fast pyrolysis of various salt-loaded celluloses at low temperatures. Fuel, 2014, 136, 62-68.	3.4	56

#	Article	IF	Citations
91	Preparation and Steam Gasification of Fe-Ion Exchanged Lignite Prepared with Iron Metal, Water, and Pressurized CO ₂ . Energy & Samp; Fuels, 2014, 28, 5623-5631.	2.5	9
92	Deep hydrogenation of coal tar over a Ni/ZSM-5 catalyst. RSC Advances, 2014, 4, 17105.	1.7	45
93	Thermal dissolution of Shengli lignite in ethyl acetate. International Journal of Oil, Gas and Coal Technology, 2014, 7, 308.	0.1	7
94	Catalytic Hydrothermal Reforming of Jatropha Oil in Subcritical Water for the Production of Green Fuels: Characteristics of Reactions over Pt and Ni Catalysts. Energy & Samp; Fuels, 2013, 27, 4796-4803.	2.5	18
95	A Highly Active Ni/ZSMâ€5 Catalyst for Complete Hydrogenation of Polymethylbenzenes. ChemCatChem, 2013, 5, 3543-3547.	1.8	45
96	Characterisation of coal and biomass based on kinetic parameter distributions for pyrolysis. Fuel, 2013, 114, 206-215.	3.4	47
97	Detailed Kinetic Analysis and Modeling of Steam Gasification of Char from Ca-Loaded Lignite. Energy & Loaded Light & Loaded Lignite. Energy & Load	2.5	23
98	Promoting gas production by controlling the interaction of volatiles with char during coal gasification in a circulating fluidized bed gasification reactor. Fuel Processing Technology, 2013, 116, 308-316.	3.7	31
99	Catalytic effects of Na and Ca from inexpensive materials on in-situ steam gasification of char from rapid pyrolysis of low rank coal in a drop-tube reactor. Fuel Processing Technology, 2013, 113, 1-7.	3.7	76
100	Rapid pyrolysis of brown coal in a drop-tube reactor with co-feeding of char as a promoter of in situ tar reforming. Fuel, 2013, 112, 681-686.	3.4	58
101	Detailed Analysis of Residual Volatiles in Chars from the Pyrolysis of Biomass and Lignite. Energy & E	2.5	21
102	Production of ketones from pyroligneous acid of woody biomass pyrolysis over an iron-oxide catalyst. Fuel, 2013, 103, 130-134.	3.4	68
103	Coproduction of clean syngas and iron from woody biomass and natural goethite ore. Fuel, 2013, 103, 64-72.	3.4	23
104	Preparation of Coke from Indonesian Lignites by a Sequence of Hydrothermal Treatment, Hot Briquetting, and Carbonization. Energy & Samp; Fuels, 2013, 27, 6607-6616.	2.5	31
105	Conversion Characteristics of Aromatic Hydrocarbons in Simulated Gaseous Atmospheres in Reducing Section of Two-Stage Entrained-Flow Coal Gasifier in Air- and O ₂ /CO ₂ -Blown Modes. Energy & Description of the Company of the Control of the Co	2.5	9
106	Estimation of Enthalpy of Bio-Oil Vapor and Heat Required for Pyrolysis of Biomass. Energy & Energy & Fuels, 2013, 27, 2675-2686.	2.5	82
107	Simultaneous Maximization of the Char Yield and Volatility of Oil from Biomass Pyrolysis. Energy & Ene	2.5	38
108	Detailed chemical kinetic modelling of vapour-phase cracking of multi-component molecular mixtures derived from the fast pyrolysis of cellulose. Fuel, 2013, 103, 141-150.	3.4	68

#	Article	IF	Citations
109	Sulfonate Ionic Liquid as a Stable and Active Catalyst for Levoglucosenone Production from Saccharides via Catalytic Pyrolysis. Catalysts, 2013, 3, 757-773.	1.6	34
110	Process Development toward Efficient Charcoal Production from Biomass Using Moving Bed Pyrolyzer. Journal of the Society of Powder Technology, Japan, 2013, 50, 173-181.	0.0	1
111	Catalytic Hydrothermal Reforming of Water-Soluble Organics from the Pyrolysis of Biomass Using a Ni/Carbon Catalyst Impregnated with Pt. Energy & Samp; Fuels, 2012, 26, 67-74.	2.5	15
112	Preparation of High-Strength Coke by Carbonization of Hot-Briquetted Victorian Brown Coal. Energy & Lamp; Fuels, 2012, 26, 296-301.	2.5	30
113	Simultaneous Steam Reforming of Tar and Steam Gasification of Char from the Pyrolysis of Potassium-Loaded Woody Biomass. Energy & Samp; Fuels, 2012, 26, 199-208.	2.5	77
114	Selective Production of Light Oil by Biomass Pyrolysis with Feedstock-Mediated Recycling of Heavy Oil. Energy & Samp; Fuels, 2012, 26, 256-264.	2.5	27
115	Reforming of Volatiles from the Biomass Pyrolysis over Charcoal in a Sequence of Coke Deposition and Steam Gasification of Coke. Energy & Samp; Fuels, 2011, 25, 5387-5393.	2.5	77
116	Efficient levoglucosenone production by catalytic pyrolysis of cellulose mixed with ionic liquid. Green Chemistry, 2011, 13, 3306.	4.6	77
117	Numerical simulation of thermal conversion of aromatic hydrocarbons in the presence of hydrogen and steam using a detailed chemical kinetic model. Chemical Engineering Journal, 2011, 178, 282-290.	6.6	31
118	A mechanistic study on kinetic compensation effect during low-temperature oxidation of coal chars. Proceedings of the Combustion Institute, 2011, 33, 1755-1762.	2.4	60
119	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IX. Effects of volatile-char interactions on char–H2O and char–O2 reactivities. Fuel, 2011, 90, 1655-1661.	3.4	77
120	Production of chemicals by cracking pyrolytic tar from Loy Yang coal over iron oxide catalysts in a steam atmosphere. Fuel Processing Technology, 2011, 92, 771-775.	3.7	53
121	Formation of NOx precursors during the pyrolysis of coal and biomass. Part X: Effects of volatile–char interactions on the conversion of coal-N during the gasification of a Victorian brown coal in O2 and steam at 800°C. Fuel, 2010, 89, 1035-1040.	3.4	15
122	Catalytic and Noncatalytic Mechanisms in Steam Gasification of Char from the Pyrolysis of Biomass ^{â€} . Energy & Damp; Fuels, 2010, 24, 108-116.	2.5	126
123	Characteristics of Gas-Phase Partial Oxidation of Nascent Tar from the Rapid Pyrolysis of Cedar Sawdust at 700â^'800 °C. Energy & Sawdust at 700â^'800 °C. Energy & Sawdust at 700â^'800 °C. Energy & Sawdust at 700â^'800 °C.	2.5	21
124	In-Situ Reforming of Tar from the Rapid Pyrolysis of a Brown Coal over Char ^{â€} . Energy & Lamp; Fuels, 2010, 24, 76-83.	2.5	74
125	Effect of Alkali and Alkaline Earth Metallic Species on Biochar Reactivity and Syngas Compositions during Steam Gasification⟨sup⟩â€⟨/sup⟩. Energy & Fuels, 2010, 24, 173-181.	2.5	203
126	A reduced mechanism for primary reactions of coal volatiles in a plug flow reactor. Combustion Theory and Modelling, 2010, 14, 841-853.	1.0	23

#	Article	IF	CITATIONS
127	Numerical Simulation of the Partial Oxidation of Hot Coke Oven Gas with a Detailed Chemical Kinetic Model ^{â€} . Energy & Samp; Fuels, 2010, 24, 165-172.	2.5	22
128	Application of an Existing Detailed Chemical Kinetic Model to a Practical System of Hot Coke Oven Gas Reforming by Noncatalytic Partial Oxidation. Industrial & Engineering Chemistry Research, 2010, 49, 10565-10571.	1.8	26
129	Numerical Simulation of Secondary Gas Phase Reactions of Coffee Grounds with a Detailed Chemical Kinetic Model. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2010, 89, 955-961.	0.2	6
130	Catalytic Partial Oxidation of Nascent Volatiles from Rapid Pyrolysis of Woody Biomass by Using Noble Metal Supported Alumina Foam. Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2009, 88, 894-899.	0.2	0
131	Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry. Journal of Analytical and Applied Pyrolysis, 2009, 86, 148-160.	2.6	91
132	Rapid Gasification of Nascent Char in Steam Atmosphere during the Pyrolysis of Na- and Ca-lon-Exchanged Brown Coals in a Drop-Tube Reactor. Energy & Energy & 23, 4496-4501.	2.5	18
133	Biotar Ironmaking Using Wooden Biomass and Nanoporous Iron Ore. Energy & Dress, 2009, 23, 1128-1131.	2.5	55
134	Cracking and Coking Behaviors of Nascent Volatiles Derived from Flash Pyrolysis of Woody Biomass over Mesoporous Fluidized-Bed Material. Industrial & Engineering Chemistry Research, 2009, 48, 2851-2860.	1.8	27
135	A study on pyrolytic gasification of coffee grounds and implications to allothermal gasification. Biomass and Bioenergy, 2008, 32, 78-89.	2.9	30
136	Effects of volatile–char interactions on the volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass. Fuel, 2008, 87, 1187-1194.	3.4	106
137	Drastic changes in biomass char structure and reactivity upon contact with steam. Fuel, 2008, 87, 1127-1132.	3.4	127
138	Mechanism of decomposition of aromatics over charcoal and necessary condition for maintaining its activity. Fuel, 2008, 87, 2914-2922.	3.4	134
139	Evolution of biomass char structure during oxidation in O2 as revealed with FT-Raman spectroscopy. Fuel Processing Technology, 2008, 89, 1429-1435.	3.7	89
140	Activity of Mesoporous Alumina Particles for Biomass Steam Reforming in a Fluidized-Bed Reactor and Its Application to a Dual-Gas-Flow Two-Stage Reactor System. Industrial & Engineering Chemistry Research, 2008, 47, 5346-5352.	1.8	16
141	Recovery of Useful Chemicals from Paper Sludge-Derived Tar by Catalytic Partial Oxidization over Zirconia-Supporting Iron Oxide Catalysts in Steam Atmosphere. Journal of Chemical Engineering of Japan, 2008, 41, 369-373.	0.3	4
142	Effects of Dewatering on the Pyrolysis and Gasification Reactivity of Victorian Brown Coalâ€. Energy & Lamp; Fuels, 2007, 21, 399-404.	2.5	24
143	Characterization of the Structural Features of Char from the Pyrolysis of Cane Trash Using Fourier Transformâ [^] Raman Spectroscopy. Energy & Energy	2.5	106
144	Changes in Viscosity of Single Coals and Their Blends upon Heatingâ€. Energy & Description (2007, 21, 405-412.	2.5	2

#	Article	IF	CITATIONS
145	Behavior of Inherent Metallic Species as a Crucial Factor for Kinetics of Steam Gasification of Char from Coal Pyrolysisâ€. Energy & Ener	2.5	42
146	Conversion of Fuel-N into HCN and NH3During the Pyrolysis and Gasification in Steam: A Comparative Study of Coal and Biomassâ€. Energy & Study of Coal and Biomassâ€. Energy & Study of Coal and Biomassâ€.	2.5	132
147	Examination of catalytic roles of inherent metallic species in steam reforming of nascent volatiles from the rapid pyrolysis of a brown coal. Fuel Processing Technology, 2007, 88, 179-185.	3.7	32
148	Interparticle Desorption and Re-adsorption of Alkali and Alkaline Earth Metallic Species within a Bed of Pyrolyzing Char from Pulverized Woody Biomass. Energy & Energy & 2006, 20, 1294-1297.	2.5	38
149	Effects of Pretreatment in Steam on the Pyrolysis Behavior of Loy Yang Brown Coal. Energy & Energy & Fuels, 2006, 20, 281-286.	2.5	41
150	Formation of HCN and NH3during the Reforming of Quinoline with Steam in a Fluidized-bed Reactor. Energy & Energ	2.5	12
151	Synthesis of carbon nanotubes on carbon fibers by means of two-step thermochemical vapor deposition. Carbon, 2006, 44, 1754-1761.	5.4	50
152	Inhibition of steam gasification of char by volatiles in a fluidized bed under continuous feeding of a brown coal. Fuel, 2006, 85, 340-349.	3.4	105
153	Formation of NOx precursors during the pyrolysis of coal and biomass. Part IX. Effects of coal ash and externally loaded-Na on fuel-N conversion during the reforming of coal and biomass in steam. Fuel, 2006, 85, 1411-1417.	3.4	29
154	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air. Fuel, 2006, 85, 1509-1517.	3.4	202
155	FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal. Fuel, 2006, 85, 1700-1707.	3.4	767
156	Gasification of Low-Rank Solid Fuels with Thermochemical Energy Recuperation for Hydrogen Production and Power Generation. Chemical Engineering Research and Design, 2006, 84, 409-419.	2.7	66
157	Effects of volatile–char interactions on the reactivity of chars from NaCl-loaded Loy Yang brown coal. Fuel, 2005, 84, 1221-1228.	3.4	77
158	Formation of NO precursors during the pyrolysis of coal and biomass. Part VII. Pyrolysis and gasification of cane trash with steam. Fuel, 2005, 84, 371-376.	3.4	52
159	Kinetics of steam gasification of nascent char from rapid pyrolysis of a Victorian brown coal. Fuel, 2005, 84, 1612-1612.	3.4	65
160	Effects of thermal pretreatment in helium on the pyrolysis behaviour of Loy Yang brown coal. Fuel, 2005, 84, 1586-1586.	3.4	30
161	Formation of NO precursors during the pyrolysis of coal and biomass. Part VIII. Effects of pressure on the formation of NH and HCN during the pyrolysis and gasification of Victorian brown coal in steam. Fuel, 2005, 84, 2102-2108.	3.4	40
162	Volatilisation of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO2. Fuel Processing Technology, 2005, 86, 1241-1251.	3.7	58

#	Article	IF	Citations
163	Volatilisation of alkali and alkaline earth metallic species during the pyrolysis of biomass: differences between sugar cane bagasse and cane trash. Bioresource Technology, 2005, 96, 1570-1577.	4.8	151
164	Spontaneous Generation of Tar Decomposition Promoter in a Biomass Steam Reformer. Chemical Engineering Research and Design, 2005, 83, 1093-1102.	2.7	64
165	Changes in the yield and size distribution of mesophase spheres on suppressing convective motion in a fused coal tar pitch. Materials Chemistry and Physics, 2005, 92, 205-213.	2.0	5
166	Primary Release of Alkali and Alkaline Earth Metallic Species during the Pyrolysis of Pulverized Biomass. Energy & Energ	2.5	186
167	Structure and Properties of Victorian Brown Coal. , 2004, , 11-84.		25
168	Pyrolysis of Victorian Brown Coal. , 2004, , 134-222.		12
169	Points of onset of gasification in a multi-walled carbon nanotube having an imperfect structure. Carbon, 2004, 42, 1635-1639.	5.4	35
170	Degradation of a Victorian brown coal in sub-critical water. Fuel, 2004, 83, 353-358.	3.4	33
171	Pyrolysis of a Victorian brown coal and gasification of nascent char in CO2 atmosphere in a wire-mesh reactor. Fuel, 2004, 83, 833-843.	3.4	141
172	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VI. Further investigation into the effects of volatile-char interactions. Fuel, 2004, 83, 1273-1279.	3.4	90
173	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part V. Combined effects of Na concentration and char structure on char reactivity. Fuel, 2004, 83, 23-30.	3.4	124
174	Evidence of poly-condensed aromatic rings in a Victorian brown coal. Fuel, 2004, 83, 97-107.	3.4	37
175	Combined effects of pressure and ion-exchangeable metallic species on pyrolysis of Victorian lignite. Fuel, 2003, 82, 343-350.	3.4	50
176	Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivitya~†. Fuel, 2003, 82, 587-593.	3.4	200
177	Formation of NOx precursors during the pyrolysis of coal and biomass. Part VI. Effects of gas atmosphere on the formation of NH3 and HCNâ ⁺ t. Fuel, 2003, 82, 1159-1166.	3.4	93
178	Release of alkali and alkaline earth metallic species during rapid pyrolysis of a Victorian brown coal at elevated pressuresa~†. Fuel, 2003, 82, 1491-1497.	3.4	66
179	Change in viscosity of softening coal upon heating with its liquid content. Part II. Examination of rheological property and phase structure of softening coalâ<†. Fuel, 2003, 82, 1743-1750.	3.4	9
180	Steam gasification characteristics of coal with rapid heating. Journal of Analytical and Applied Pyrolysis, 2003, 70, 185-197.	2.6	26

#	Article	IF	Citations
181	Needle penetrometry with variable force loading for measuring viscosity of pelletized coal upon heatingâ~†. Fuel, 2003, 82, 487-500.	3.4	13
182	Change in viscosity of softening coal upon heating with its liquid content. Part I: linear relationship between logarithm of viscosity and liquid fractiona (†. Fuel, 2003, 82, 1735-1741.	3.4	11
183	Vapor-Liquid Distribution of Oil in Coal Liquefaction Process Kagaku Kogaku Ronbunshu, 2003, 29, 100-106.	0.1	O
184	Release of volatiles from the pyrolysis of a Victorian lignite at elevated pressures. Fuel, 2002, 81, 1171-1178.	3.4	37
185	Roles of inherent metallic species in secondary reactions of tar and char during rapid pyrolysis of brown coals in a drop-tube reactor. Fuel, 2002, 81, 1977-1987.	3.4	111
186	An Experimental Definition of Primary Conversion of a Brown Coal in Liquefaction by Means of a Flowing Solvent Technique Journal of Chemical Engineering of Japan, 2002, 35, 160-166.	0.3	5
187	Estimation of Properties of Narrow Boiling Range Coal-Derived Liquids from the 150 ton/day NEDOL Coal Liquefaction Pilot Plant Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2002, 81, 854-863.	0.2	0
188	Estimation of Size and Shape of Pores in Moist Coal Utilizing Sorbed Water as a Molecular Probe. Energy & Energ	2.5	48
189	Modeling of Effects of Volatile Matter Cloud on Heterogeneous Ignition of Single Coal Particles Journal of Chemical Engineering of Japan, 2000, 33, 49-56.	0.3	4
190	Kinetic study of hydrogen adsorption on sulfated zirconia-supported platinum. Applied Catalysis A: General, 2000, 202, 207-213.	2.2	40
191	Experimental examination of existing slurry models for coal softening and resolidification. Fuel, 2000, 79, 391-397.	3.4	11
192	Effective Viscosity and Thermal Conductivity of Slurry in a Preheater of the 150 ton/day NEDOL Coal Liquefaction Pilot Plant Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 2000, 79, 69-83.	0.2	0
193	Reactions in Brown Coal Pyrolysis Responsible for Heating Rate Effect on Tar Yield. Energy & Camp; Fuels, 2000, 14, 400-408.	2.5	60
194	Reduction in Thermoplasticity of Illinois No. 6 Coal by Heat Treatment in Refluxing Chlorobenzene. Energy & Ene	2.5	3
195	Fluorescence Spectroscopic Analysis of Tars from the Pyrolysis of a Victorian Brown Coal in a Wire-Mesh Reactor. Energy & Doubles, 2000, 14, 476-482.	2.5	48
196	Mobilization of the Hydroxyls in a Brown Coal with Solvent-Induced Swelling Evaluated by Pulsed1H NMR. Energy & Samp; Fuels, 2000, 14, 503-508.	2.5	2
197	Evaluation of Macromolecular Structure of a Brown Coal by Means of Oxidative Degradation in Aqueous Phase. Energy & Degradation in Aqueous Phase. Energy & Degradation in Aqueous Phase.	2.5	39
198	Effect of Sorbed Water on Conversion of Coal by Rapid Pyrolysis. Energy & E	2.5	13

#	Article	IF	CITATIONS
199	Evaluation of Effect of Predrying on the Porous Structure of Water-Swollen Coal Based on the Freezing Property of Pore Condensed Water. Energy & Energy & 1999, 13, 1058-1066.	2.5	43
200	Microheterogeneity of Solvent-Swollen Coal Probed by Proton Spin Diffusion. Energy & D	2.5	8
201	Quantitative Description of Oxidative Degradation of Brown Coal in Aqueous Phase on the Basis of Bethe Lattice Statistics. Energy & Samp; Fuels, 1999, 13, 1230-1238.	2.5	16
202	Classification of Water Sorbed in Coal on the Basis of Congelation Characteristics. Energy & Company & Energy &	2.5	81
203	Pyrolysis of polypropylene in the presence of oxygen. Fuel Processing Technology, 1998, 55, 265-275.	3.7	34
204	Evaluation of Drying Induced Changes in the Molecular Mobility of Coal by Means of Pulsed Proton NMR. Energy & Samp; Fuels, 1998, 12, 1013-1019.	2.5	25
205	Characteristics of Vaporization of Coal Ash Minerals Chlorinated by Gaseous Hydrogen Chloride. Industrial & Description of Coal Ash Minerals Chlorinated by Gaseous Hydrogen Chloride.	1.8	10
206	Depolymerization of Lower Rank Coals by Low-Temperature O2Oxidation. Energy & Depolymerization of Lower Rank Coals by Low-Temperature O2Oxidation. Energy & Depolymerization of Lower Rank Coals by Low-Temperature O2Oxidation. Energy & Depolymerization of Lower Rank Coals by Low-Temperature O2Oxidation. Energy & Depolymerization of Lower Rank Coals by Low-Temperature O2Oxidation. Energy & Depolymerization of Lower Rank Coals by Low-Temperature O2Oxidation. Energy & Depolymerization of Lower Rank Coals by Low-Temperature O2Oxidation. Energy & Depolymerization of Lower Rank Coals by Low-Temperature O2Oxidation. Energy & Depolymerization of Lower Rank Coals by Low-Temperature O2Oxidation. Energy & Depolymerization of Lower Rank Coals by Low-Temperature O2Oxidation. Energy & Depolymerization of Lower Rank Coals by Low-Temperature O2Oxidation.	2.5	42
207	Effect of Oxidation on Gas Permeation of Carbon Molecular Sieving Membranes Based on BPDA-pp†ODA Polyimide. Industrial & Damp; Engineering Chemistry Research, 1997, 36, 2134-2140.	1.8	83
208	Dependence of Single Coal Particle Ignition Mechanism on the Surrounding Volatile Matter Cloud. Energy & Samp; Fuels, 1997, 11, 1033-1039.	2.5	36
209	A Model for Softening and Resolidification of Coals Heated at Different Rates ISIJ International, 1997, 37, 566-572.	0.6	13
210	Pore size control of carbonized BPDA-pp′ ODA polyimide membrane by chemical vapor deposition of carbon. Journal of Membrane Science, 1997, 124, 243-251.	4.1	138
211	Carbon molecular sieve membrane formed by oxidative carbonization of a copolyimide film coated on a porous support tube. Journal of Membrane Science, 1997, 133, 195-205.	4.1	79
212	Mechanism of Single Coal Particle Ignition under Microgravity Condition Journal of Chemical Engineering of Japan, 1997, 30, 146-153.	0.3	17
213	A Preliminary Experiment of Volatilization of Minerals in Coal Ash by Chlorination Treatment Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 1997, 76, 134-144.	0.2	2
214	Separation of Ethane/Ethylene and Propane/Propylene Systems with a Carbonized BPDAâ^'pp ODA Polyimide Membrane. Industrial & Engineering Chemistry Research, 1996, 35, 4176-4181.	1.8	152
215	Flash Pyrolysis of Brown Coal Modified by Alcohol-Vapor Explosion Treatment. Energy & Energy	2.5	19
216	Coating of carbon fibers with amorphous SiC films as diffusion barriers by chemical vapor deposition with triisopropylsilane. Carbon, 1996, 34, 179-185.	5 . 4	26

#	Article	IF	CITATIONS
217	Development of supported thin palladium membrane and application to enhancement of propane aromatization on Ga-silicate catalyst. Chemical Engineering Science, 1996, 51, 3027-3032.	1.9	31
218	Preparation and characterization of silicaâ€"polyimide composite membranes coated on porous tubes for CO2 separation. Journal of Membrane Science, 1996, 115, 65-75.	4.1	113
219	Rapid stabilization of pitch fiber precursor by multi-step thermal oxidation. Carbon, 1995, 33, 1567-1571.	5.4	20
220	Evaluation of Vapor-Phase Reactivity of Primary Tar Produced by Flash Pyrolysis of Coal. Energy & Energy & Fuels, 1995, 9, 290-294.	2.5	21
221	Effect of Light Heat Treatment on Pyrolysis Reactivity of Brown Coal. Energy & Energ	2.5	13
222	Simultaneous Improvement of Permeance and Permselectivity of 3,3',4,4'-Biphenyltetracarboxylic Dianhydride-4,4'-Oxydianiline Polyimide Membrane by Carbonization. Industrial & Engineering Chemistry Research, 1995, 34, 4364-4370.	1.8	99
223	Examination of Change in Coal Gel Structure Due to Solvent Swelling by Size Exclusion Chromatography. Energy &	2.5	7
224	Role of Iron Catalyst Impregnated by Solvent Swelling Method in Pyrolytic Removal of Coal Nitrogen. Energy & En	2.5	16
225	Evaluation of Interaction between Aromatic Penetrants and Acidic OH Groups of Solvent-Swollen Coals by Inverse Liquid Chromatography. Energy & Energy & 1995, 9, 1023-1027.	2.5	17
226	Flash Copyrolysis of Coal and Polyolefin. Energy & Energy & 1994, 8, 1353-1359.	2.5	17
227	Effect of carbon source on formation of vapor-grown carbon fiber. Carbon, 1993, 31, 937-940.	5.4	20
228	Physical and chemical modification of low-rank coals with alkyl chains and the roles of incorporated groups in pyrolysis. Energy & Energy	2.5	19
229	Characterization of structural and interfacial properties of solvent-swollen coals by inverse liquid chromatography technique. Energy & En	2.5	15
230	Control of molecular composition of tar by secondary reaction in fluidized-bed pyrolysis of a subbituminous coal. Energy & Energy	2.5	48
231	Decomposition rate of volatile organochlorines by ozone and utilization efficiency of ozone with ultraviolet radiation in a bubble-column contactor. Water Research, 1993, 27, 1091-1097.	5.3	25
232	Compositive Pyrolysis of Coal and Coal Liquefaction Residue Nihon Enerugi Gakkaishi/Journal of the Japan Institute of Energy, 1993, 72, 1009-1015.	0.2	2
233	Change in molecular structure of flash pyrolysis tar by secondary reaction in a fluidized bed reactor. Fuel Processing Technology, 1992, 30, 237-248.	3.7	33
234	Destruction rate of volatile organochlorine compounds in water by ozonation with ultraviolet radiation. Water Research, 1991, 25, 1199-1203.	5.3	31

#	Article	IF	CITATIONS
235	Removal of calcium from low rank coals by treatment with CO2 dissolved in water. Fuel, 1991, 70, 1181-1186.	3.4	30
236	The role of microwave irradiation in coal desulphurization with molten caustics. Fuel, 1990, 69, 739-742.	3.4	30
237	Decomposition of humic acid and reduction of trihalomethane formation potential in water by ozone with u.v. irradiation. Water Research, 1990, 24, 781-785.	5.3	48
238	Decomposition and utilization of ozone in water treatment reactor with ultraviolet radiation. Industrial & Engineering Chemistry Research, 1988, 27, 2372-2377.	1.8	19
239	Homogeneous catalyst modifier for alkyne semi-hydrogenation: systematic screening in an automated flow reactor and computational study on mechanisms. Reaction Chemistry and Engineering, 0, , .	1.9	1