Youqiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3274981/publications.pdf

Version: 2024-02-01

90	2,989	29 h-index	53
papers	citations		g-index
90	90	90	2305
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High-directionality spin-selective routing of photons in plasmonic nanocircuits. Nanoscale, 2022, 14, 428-432.	5. 6	3
2	Singlemode-Multimode-Singlemode Fiber Structures for Sensing Applications—A Review. IEEE Sensors Journal, 2021, 21, 12734-12751.	4.7	78
3	High sensitivity liquid level sensor for microfluidic applications using a hollow core fiber structure. Sensors and Actuators A: Physical, 2021, 332, 113134.	4.1	6
4	Spectral dependence of transmission losses in high-index polymer coated no-core fibers. Journal of Lightwave Technology, 2020, , 1-1.	4.6	6
5	Negative Curvature Hollow Core Fiber Based All-Fiber Interferometer and Its Sensing Applications to Temperature and Strain. Sensors, 2020, 20, 4763.	3.8	8
6	Anti-resonance, inhibited coupling and mode transition in depressed core fibers. Optics Express, 2020, 28, 16526.	3.4	14
7	High-sensitivity temperature sensor based on anti-resonance in high-index polymer-coated optical fiber interferometers. Optics Letters, 2020, 45, 5385.	3.3	18
8	Ultrasensitive biosensor based on magnetic microspheres enhanced microfiber interferometer. Biosensors and Bioelectronics, 2019, 145, 111563.	10.1	29
9	SNS optical fiber sensor for direct detection of phase transitions in C18H38 n-alkane material. Experimental Thermal and Fluid Science, 2019, 109, 109854.	2.7	7
10	Discrete Self-Imaging in Small-Core Optical Fiber Interferometers. Journal of Lightwave Technology, 2019, 37, 1873-1884.	4.6	12
11	Magnetic Field Sensor Based on a Tri-Microfiber Coupler Ring in Magnetic Fluid and a Fiber Bragg Grating. Sensors, 2019, 19, 5100.	3 . 8	18
12	Mode Transition in Conventional Step-Index Optical Fibers. , 2019, , .		1
13	Temperature-compensated magnetic field sensing with a dual-ring structure consisting of microfiber coupler-Sagnac loop and fiber Bragg grating-assisted resonant cavity. Applied Optics, 2019, 58, 2334.	1.8	17
14	Strain independent twist sensor based on uneven platinum coated hollow core fiber structure. Optics Express, 2019, 27, 19726.	3.4	7
15	Sub-micrometer resolution liquid level sensor based on a hollow core fiber structure. Optics Letters, 2019, 44, 2125.	3.3	40
16	Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement. Journal of Lightwave Technology, 2018, 36, 1583-1590.	4.6	59
17	A comprehensive experimental study of whispering gallery modes in a cylindrical microresonator excited by a tilted fiber taper. Microwave and Optical Technology Letters, 2018, 60, 1495-1504.	1.4	7
18	Silica Gel Coated Spherical Micro resonator for Ultra-High Sensitivity Detection of Ammonia Gas Concentration in Air. Scientific Reports, 2018, 8, 1620.	3.3	34

#	Article	IF	CITATIONS
19	High Sensitive Z-Shaped Fiber Interferometric Refractive Index Sensor: Simulation and Experiment. IEEE Photonics Technology Letters, 2018, 30, 1131-1134.	2.5	10
20	A Coated Spherical Microresonator for Measurement of Water Vapor Concentration at PPM Levels in Very Low Humidity Environments. Journal of Lightwave Technology, 2018, 36, 2667-2674.	4.6	23
21	A Packaged Whispering Gallery Mode Strain Sensor Based on a Polymer-Wire Cylindrical Micro Resonator. Journal of Lightwave Technology, 2018, 36, 1757-1765.	4.6	25
22	Fabrication and Characterization of a Magnetized Metal-Encapsulated FBG Sensor for Structural Health Monitoring. IEEE Sensors Journal, 2018, 18, 8739-8746.	4.7	13
23	Optical fibre sensors for monitoring phase transitions in phase changing materials. Smart Materials and Structures, 2018, 27, 105021.	3.5	5
24	High sensitivity optical fiber sensors for simultaneous measurement of methanol and ethanol. Sensors and Actuators B: Chemical, 2018, 271, 1-8.	7.8	45
25	Highly Sensitive Twist Sensor Based on Partially Silver Coated Hollow Core Fiber Structure. Journal of Lightwave Technology, 2018, 36, 3672-3677.	4.6	37
26	A simple all-fiber comb filter based on the combined effect of multimode interference and Mach-Zehnder interferometer. Scientific Reports, 2018, 8, 11803.	3.3	10
27	A simple optical fiber interferometer based breathing sensor. Measurement Science and Technology, 2017, 28, 035105.	2.6	28
28	High Sensitivity Ammonia Gas Sensor Based on a Silica-Gel-Coated Microfiber Coupler. Journal of Lightwave Technology, 2017, 35, 2864-2870.	4.6	33
29	Magnetic field sensor based on a combination of a microfiber coupler covered with magnetic fluid and a Sagnac loop. Scientific Reports, 2017, 7, 4725.	3.3	57
30	High Sensitivity Refractometer Based on Reflective Smf-Small Diameter No Core Fiber Structure. Sensors, 2017, 17, 1415.	3.8	16
31	Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials. Sensors, 2016, 16, 99.	3.8	255
32	High sensitivity sol-gel silica coated optical fiber sensor for detection of ammonia in water. Optics Express, 2016, 24, 24179.	3.4	32
33	Investigation of Humidity and Temperature Response of a Silica Gel Coated Microfiber Coupler. IEEE Photonics Journal, 2016, 8, 1-7.	2.0	25
34	Sol-gel silica coated optical fiber sensor for ammonia gas detection. , 2016, , .		0
35	Optical microfiber-loaded surface plasmonic TE-pass polarizer. Optics and Laser Technology, 2016, 78, 101-105.	4.6	9
36	Demodulation Algorithm Using the Hilbert Transform for a Dynamic Polarimetric Optical Fiber Sensor. IEEE Sensors Journal, 2015, 15, 6664-6670.	4.7	4

#	Article	IF	Citations
37	Refractive index sensor based on a silica microsphere whispering gallery mode resonator. , 2015, , .		1
38	Optical Microfibre Based Photonic Components and Their Applications in Label-Free Biosensing. Biosensors, 2015, 5, 471-499.	4.7	32
39	A Compact Sagnac Loop Based on a Microfiber Coupler for Twist Sensing. IEEE Photonics Technology Letters, 2015, 27, 2579-2582.	2.5	30
40	Investigation on stress/strain sensing characteristics for magnetorheological smart composite material by a SMS fiber structure. , $2015, \dots$		0
41	Optical microfiber coupler based humidity sensor with a polyethylene oxide coating. Microwave and Optical Technology Letters, 2015, 57, 457-460.	1.4	33
42	High sensitivity refractive index sensor based on a tapered small core single-mode fiber structure. Optics Letters, 2015, 40, 4166.	3.3	70
43	Corrections to "Low Loss, High Extinction Ration and Ultra-Compact Plasmonic Polarization Beam Splitter―[Apr 1 2014 660-663]. IEEE Photonics Technology Letters, 2014, 26, 2413-2413.	2.5	0
44	A miniaturized flexible surface attachable interrogator for hybrid optical fiber sensing. Microwave and Optical Technology Letters, 2014, 56, 1167-1174.	1.4	2
45	The use of a bend singlemode–multimode–singlemode (SMS) fibre structure for vibration sensing. Optics and Laser Technology, 2014, 63, 29-33.	4.6	28
46	Experimental Study and Analysis of a Polymer Fiber Bragg Grating Embedded in a Composite Material. Journal of Lightwave Technology, 2014, 32, 1726-1733.	4.6	36
47	Low Loss, High Extinction Ration and Ultra-Compact Plasmonic Polarization Beam Splitter. IEEE Photonics Technology Letters, 2014, 26, 660-663.	2.5	23
48	Enhanced Refractometer Based on Periodically Tapered Small Core Singlemode Fiber. IEEE Sensors Journal, 2013, 13, 180-185.	4.7	35
49	Enhanced refractive index sensor using a combination of a long period fiber grating and a small core singlemode fiber structure. Measurement Science and Technology, 2013, 24, 094002.	2.6	7
50	Mid-infrared Raman sources using spontaneous Raman scattering in germanium core optical fibers. Applied Physics Letters, 2013, 102, .	3.3	18
51	Fiber Optic Hybrid Device for Simultaneous Measurement of Humidity and Temperature. IEEE Sensors Journal, 2013, 13, 1632-1636.	4.7	37
52	Novel Dielectric-Loaded Plasmonic Waveguide for Tight-Confined Hybrid Plasmon Mode. Plasmonics, 2013, 8, 1259-1263.	3.4	8
53	High Sensitivity Fiber Refractometer Based on an Optical Microfiber Coupler. IEEE Photonics Technology Letters, 2013, 25, 228-230.	2.5	56
54	Packaged chalcogenide microsphere resonator with high Q-factor. Applied Physics Letters, 2013, 102, .	3.3	47

#	Article	IF	Citations
55	Fiber-tip high-temperature sensor based on multimode interference. Optics Letters, 2013, 38, 4617.	3.3	70
56	High-Q Bismuth-Silicate Nonlinear Glass Microsphere Resonators. IEEE Photonics Journal, 2012, 4, 1013-1020.	2.0	10
57	Experimental Study on the Frequency Dependence of the Liquid Crystal Infiltrated Photonic Crystal Fibers. IEEE Sensors Journal, 2012, 12, 1018-1024.	4.7	5
58	Analysis and applications of nanocavity structures used as tunable filters and sensors. Infrared Physics and Technology, 2012, 55, 389-394.	2.9	14
59	Relative Humidity Sensor Based on an Agarose-Infiltrated Photonic Crystal Fiber Interferometer. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18, 1553-1559.	2.9	83
60	Evanescent field coupling between two parallel close contact SMS fiber structures. Optics Express, 2012, 20, 3098.	3.4	8
61	Numerical investigation on a laser based localised joining with a glass frit intermediate layer. Microsystem Technologies, 2012, 18, 87-95.	2.0	2
62	Experimental demonstration of a simple displacement sensor based on a bent single-mode–multimode–single-mode fiber structure. Measurement Science and Technology, 2011, 22, 025203.	2.6	59
63	Use of a Bent Single SMS Fiber Structure for Simultaneous Measurement of Displacement and Temperature Sensing. IEEE Photonics Technology Letters, 2011, 23, 130-132.	2.5	94
64	A miniature optical humidity sensor. , 2011, , .		4
65	High sensitivity SMS fiber structure based refractometer – analysis and experiment. Optics Express, 2011, 19, 7937.	3.4	387
66	Humidity sensor based on a single-mode hetero-core fiber structure. Optics Letters, 2011, 36, 1752.	3.3	79
67	Fiber refractometer based on a fiber Bragg grating and single-mode–multimode–single-mode fiber structure. Optics Letters, 2011, 36, 2197.	3.3	125
68	High-sensitivity, evanescent field refractometric sensor based on a tapered, multimode fiber interference. Optics Letters, 2011, 36, 2233.	3.3	252
69	A novel highly sensitive optical fiber microphone based on single mode–multimode–single mode structure. Microwave and Optical Technology Letters, 2011, 53, 442-445.	1.4	17
70	Experimental demonstration of an allâ€fiber variable optical attenuator based on liquid crystal infiltrated photonic crystal fiber. Microwave and Optical Technology Letters, 2011, 53, 539-543.	1.4	20
71	Singleâ€mode–multimode–singleâ€mode fiber structures for simultaneous measurement of strain and temperature. Microwave and Optical Technology Letters, 2011, 53, 2181-2185.	1.4	27
72	Lead silicate glass microsphere resonators with absorption-limited Q. Applied Physics Letters, 2011, 98,	3.3	13

#	Article	IF	Citations
73	A comprehensive analysis verified by experiment of a refractometer based on an SMF28–small-core singlemode fiber (SCSMF)–SMF28 fiber structure. Journal of Optics (United Kingdom), 2011, 13, 125401.	2.2	35
74	Low cost disposable reflective optical fiber microphone. Microwave and Optical Technology Letters, 2010, 52, 1504-1507.	1.4	1
75	A voltage sensor based on a singlemode–multimode–singlemode fiber structure. Microwave and Optical Technology Letters, 2010, 52, 1887-1890.	1.4	13
76	A bend loss–based singlemode fiber microdisplacement sensor. Microwave and Optical Technology Letters, 2010, 52, 2231-2235.	1.4	8
77	Simple design technique for a triangular FBG filter based on a linearly chirped grating. Optics Communications, 2010, 283, 985-992.	2.1	15
78	A study of the effect of the position of an edge filter within a ratiometric wavelength measurement system. Measurement Science and Technology, 2010, 21, 094013.	2.6	10
79	A Fiber Bragg Grating-Based All-Fiber Sensing System for Telerobotic Cutting Applications. IEEE Sensors Journal, 2010, 10, 1913-1920.	4.7	13
80	Strain sensor based on a pair of single-mode-multimode-single-mode fiber structures in a ratiometric power measurement scheme. Applied Optics, 2010, 49, 536.	2.1	64
81	Study of the effect of source signal bandwidth on ratiometric wavelength measurement. Applied Optics, 2010, 49, 5626.	2.1	4
82	A Macrobending Fiber Based Micro-Displacement Sensor. , 2010, , .		2
83	Investigation of polarizationâ€dependent loss for a macrobending loss sensitive singleâ€mode fiber. Microwave and Optical Technology Letters, 2009, 51, 1460-1464.	1.4	0
84	Use of a single-multiple-single-mode fiber filter for interrogating fiber Bragg grating strain sensors with dynamic temperature compensation. Applied Optics, 2009, 48, 5451.	2.1	48
85	Temperature-Induced Instabilities in Macro-Bend Fiber Based Wavelength Measurement Systems. Journal of Lightwave Technology, 2009, 27, 1355-1361.	4.6	9
86	Ratiometric wavelength monitor based on singlemodeâ€multimodeâ€singlemode fiber structure. Microwave and Optical Technology Letters, 2008, 50, 3036-3039.	1.4	20
87	A Low Polarization Sensitivity All-Fiber Wavelength Measurement System. IEEE Photonics Technology Letters, 2008, 20, 1464-1466.	2.5	9
88	Modeling and Analysis of the Effect of Noise on an Edge Filter Based Ratiometric Wavelength Measurement System. Journal of Lightwave Technology, 2008, 26, 3434-3442.	4.6	5
89	Effect of SNR of input signal on the accuracy of a ratiometric wavelength measurement system. Microwave and Optical Technology Letters, 2007, 49, 1022-1024.	1.4	6
90	A method to measure reference strain in FBG strain sensor interrogation system involving actuators. Microwave and Optical Technology Letters, 2007, 49, 2658-2661.	1.4	4